From 76781234f2c320ca71f308ada5a2f5b4d9154e59 Mon Sep 17 00:00:00 2001
From: Holden Rohrer
Date: Tue, 14 Apr 2020 20:32:26 -0400
Subject: update with a correction and more clarity
---
execsumm/document.tex | 16 +++++++++-------
1 file changed, 9 insertions(+), 7 deletions(-)
diff --git a/execsumm/document.tex b/execsumm/document.tex
index 95146a4..930705b 100644
--- a/execsumm/document.tex
+++ b/execsumm/document.tex
@@ -12,7 +12,7 @@ is useful (this form was chosen to reduce fractions' usage):
$$\x' =
{1\over R_1C_1C_2\rload}
\pmatrix{0&-C_2\rload &0 \cr
- 0&-C_2(R_1+\rload)&-C_1R_1\cr
+ 0&-C_2(R_1+\rload)&C_1R_1\cr
0&C_2R_1 &-C_1R_1} \x +
{1\over R_1}
\pmatrix{\omega\cos(\omega t)\cr
@@ -21,18 +21,20 @@ $$\x' =
.$$
The characteristic polynomial is
$$-\lambda( (-\lambda-C_2(R_1+\rload))(-\lambda-C_1R_1)
-+ C_2C_1R_1^2).$$
+- C_2C_1R_1^2).$$
Expanded,
$$-\lambda( \lambda^2 + \lambda(C_2(R_1+\rload)+C_1R_1)
-+ C_1C_2R_1(2R_1+\rload)).$$
++ C_1C_2R_1\rload).$$
In terms of its roots (with $b=C_2(R_1+\rload)+C_1R_1$ and
-$c = C_1C_2R_1(2R_1+\rload),$
+$c = C_1C_2R_1\rload,$
$$-\lambda{(\lambda-{-b+\sqrt{b^2-4c}\over2})
(\lambda-{-b-\sqrt{b^2-4c}\over 2})}$$
%For reference,
%$$b^2-4c = C_2^2(R_1+\rload)^2 + C_1^2\rload^2
% - 2C_1C_2\rload(3R_1+\rload).$$
Let $r_1$ and $r_2$ designate these two non-zero roots.
+In the original matrix $A$, this being the transformed matrix $A/c$,
+$Av = cr_1$ because $A/c * v = r_1.$
The trivial zero eigenvalue corresponds to a unit x-direction vector
by inspection. The two remaining roots, in the general case of a non-%
@@ -56,9 +58,9 @@ $\displaystyle z = y{C_2R_1\over r+C_1R_1}.$
-{r_#1\over C_2\rload}\cr
-{R_1r_#1\over \rload(r_#1+C_1R_1)}}}
-\bu $\displaystyle\lambda_2 = {r_1\over C_1C_2R_1\rload}, v_2 = \num1.$
+\bu $\displaystyle\lambda_2 = {r_1C_1C_2R_1\rload}, v_2 = \num1.$
-\bu $\displaystyle\lambda_3 = {r_2\over C_1C_2R_1\rload}, v_3 = \num2.$
+\bu $\displaystyle\lambda_3 = {r_2C_1C_2R_1\rload}, v_3 = \num2.$
This corresponds to a solution of the form $f = Ce^{\lambda t}v,\cdots$
where $C\in {\bf C},$ $f\in {\bf R}\to{\bf R}$. If the non-trivial
@@ -72,6 +74,6 @@ $g = C_1\cos{\re(\lambda)t}\re v + C_2\sin{\re(\lambda)t}\im v.$ %% DOUBLE CHECK
Extending to the nonhomogeneous system will take slightly different
paths depending on if the system has complex roots or has real roots.
But in either case, $\cos x*{\rm polynomial}+\sin x*{\rm polynomial}$
-should be a particular solution
+should be a particular solution.
\bye
--
cgit