From 2c18d2f1f2888eb2eb8779457db70f2f8615c2b9 Mon Sep 17 00:00:00 2001 From: Holden Rohrer Date: Fri, 3 Apr 2020 17:44:18 -0400 Subject: minor fix --- progreport/document.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'progreport') diff --git a/progreport/document.tex b/progreport/document.tex index 7ec2077..7b34439 100644 --- a/progreport/document.tex +++ b/progreport/document.tex @@ -24,7 +24,7 @@ entire problem uses $E(t) = \sin(\omega t)$. From Kirchhoff's Voltage law over the first (xy) loop, $$E(t) = \sin(\omega t) = x(t)R_1 + {1\over C_1}\int y(t)dt.$$ -Kirchhoff's Voltage law also applies to the second yz-loop: +Kirchhoff's Voltage law also applies to the second (yz) loop: $${1\over C_1}\int y(t)dt = {1\over C_2}\int z(t)dt + z(t)\rload.$$ Differentiating and rearranging gives: $$x'(t) = -{y(t) \over R_1C_1} + {\omega\cos(\omega t) \over R_1},$$ -- cgit