From 2c18d2f1f2888eb2eb8779457db70f2f8615c2b9 Mon Sep 17 00:00:00 2001
From: Holden Rohrer
Date: Fri, 3 Apr 2020 17:44:18 -0400
Subject: minor fix
---
progreport/document.tex | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'progreport')
diff --git a/progreport/document.tex b/progreport/document.tex
index 7ec2077..7b34439 100644
--- a/progreport/document.tex
+++ b/progreport/document.tex
@@ -24,7 +24,7 @@ entire problem uses $E(t) = \sin(\omega t)$.
From Kirchhoff's Voltage law over the first (xy) loop,
$$E(t) = \sin(\omega t) = x(t)R_1 + {1\over C_1}\int y(t)dt.$$
-Kirchhoff's Voltage law also applies to the second yz-loop:
+Kirchhoff's Voltage law also applies to the second (yz) loop:
$${1\over C_1}\int y(t)dt = {1\over C_2}\int z(t)dt + z(t)\rload.$$
Differentiating and rearranging gives:
$$x'(t) = -{y(t) \over R_1C_1} + {\omega\cos(\omega t) \over R_1},$$
--
cgit