\documentclass{article} \usepackage{hyperref} \def\rload{R_{\rm load}} \date{} \begin{document} \title{Project Executive Summary} \author{Holden Rohrer and Nithya Jayakumar} \maketitle \section{Matrix Representation and Homogeneous Solution} To determine the relevant properties of the linear system, matrix form is useful (this form was chosen to reduce fractions' usage): \def\x{{\bf x}} $$\x' = {1\over R_1C_1C_2\rload} \pmatrix{0&-C_2\rload &0 \cr 0&-C_2(R_1+\rload)&C_1R_1\cr 0&C_2R_1 &-C_1R_1} \x + {1\over R_1} \pmatrix{\omega\cos(\omega t)\cr \omega\cos(\omega t)\cr 0} .$$ The characteristic polynomial is $$-\lambda( (-\lambda-C_2(R_1+\rload))(-\lambda-C_1R_1) - C_2C_1R_1^2).$$ Expanded, $$-\lambda( \lambda^2 + \lambda(C_2(R_1+\rload)+C_1R_1) + C_1C_2R_1\rload).$$ In terms of its roots (with $b=C_2(R_1+\rload)+C_1R_1$ and $c = C_1C_2R_1\rload,$ $$-\lambda{(\lambda-{-b+\sqrt{b^2-4c}\over2}) (\lambda-{-b-\sqrt{b^2-4c}\over 2})}$$ %For reference, %$$b^2-4c = C_2^2(R_1+\rload)^2 + C_1^2\rload^2 % - 2C_1C_2\rload(3R_1+\rload).$$ Let $r_1$ and $r_2$ designate these two non-zero roots. In the original matrix $A$, this being the transformed matrix $A/c$, $Av = cr_1$ because $A/c * v = r_1.$ The trivial zero eigenvalue corresponds to a unit x-direction vector by inspection. The two remaining roots, in the general case of a non-% degenerate system, which hasn't been explicitly ruled out, the middle row can be ``ignored'' because it is linearly independent in the following system: $$ \pmatrix{-r&-C_2\rload &0\cr * &* &*\cr 0 &C_2R_1 &-r-C_1R_1} $$ With $x = 1$, $\displaystyle y = -{r\over C_2\rload}$ and $\displaystyle z = y{C_2R_1\over r+C_1R_1}.$ \def\bu{\par\leavevmode\llap{\hbox to \parindent{\hfil $\bullet$ \hfil}}} \noindent The eigenvalues and respective eigenvectors are: \bu $\lambda_1 = 0, v_1 = \pmatrix{1\cr0\cr0}$ \def\num#1{\pmatrix{1\cr -{r_#1\over C_2\rload}\cr -{R_1r_#1\over \rload(r_#1+C_1R_1)}}} \bu $\displaystyle\lambda_2 = {r_1C_1C_2R_1\rload}, v_2 = \num1.$ \bu $\displaystyle\lambda_3 = {r_2C_1C_2R_1\rload}, v_3 = \num2.$ This corresponds to a solution of the form $f = Ce^{\lambda t}v,\cdots$ where $C\in {\bf C},$ $f\in {\bf R}\to{\bf R}$. If the non-trivial eigenvectors are complex, %% TRY TO PROVE THIS!! \def\re{{\rm Re}}\def\im{{\rm Im}} their exponential solutions form, in the reals, $g = C_1\cos{\re(\lambda)t}\re v + C_2\sin{\re(\lambda)t}\im v.$ %% DOUBLE CHECK. \section{Nonhomogeneous System} Extending to the nonhomogeneous system will take slightly different paths depending on if the system has complex roots or has real roots. But in either case, $\cos x*{\rm polynomial}+\sin x*{\rm polynomial}$ should be a particular solution. We can apply the method of Variation of Parameters to this. Essentially, the solution is $\bf{x} = c_1\bf{\lambda_1}(t) + c_2\bf{\lambda_2}(t) + c_3\bf{\lambda_3}(t)\bf{\lambda_p}(t)$, where the particular solution $\bf{\lambda_p}(t)$ is: $$\bf{\lambda_p}(t) = \bf{X}(t)\int\bf{X^{-1}}(t)\bf{g}(t)dt,$$ where $\bf{X}(t)$ is the Fundamental matrix for the equation and $\bf{g}(t) = {1\over R_1} \pmatrix{\omega\cos(\omega t)\cr \omega\cos(\omega t)\cr 0}.$ \end{document}