\input ws-form.tex \input tikz%graphs {\bf \noindent\line{Math 3012-QHS \hfil Name: \rm \underline{Holden Rohrer}} Fall 2019\par\noindent Worksheet 2\par\noindent Due 09/10/2019} \smallskip \hrule \medskip \def\G{{\bf G}} \question{% Q1 - (Chapter 5, Exercise 18) Find a proper $(t+1)$-coloring of the graph $\G_{t+1}$ in Mycielski's proof of Proposition 5.25. This establishes that $\chi(\G_{t+1})\leq t+1$. }{ $\G_{t+1}=(V,E)$ is constructed as a $t$-colorable graph $\G_t$, an independent graph $I$ where $|I|=|G_t|=n$, and a separate vertex $z$. For the distinct vertices $i_1,i_2,\dots,i_n \in I$, $\{i_k,z\} \in E$ and $\{i_k,g_{G_j}\} \in E$ if $\{G_{t_j},G_{t_i}\} \in E$, given a similar enumeration on $G$. Let $\phi:V\to C$ be a proper coloring where $C$ is a set of colors $|C|=t+1$. If $\phi(i_k)=\phi(G_{t_j})$ and $\phi(z)=c$ where $c \notin \phi(I)$, $\phi$ is a proper coloring of $G_{t+1}$ on $t+1$ colors. } \question{% Q2 - (Chapter 5, Exercise 20) Construct and draw the graph $\G_5$ from Mycielski's proof of Proposition 5.25. }{ \tikzpicture \node[draw,circle,inner sep=0.1cm,fill=white] (a) at (0,0) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (b) at (0,1) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (c) at (1,0) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (d) at (2,0) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (e) at (1,1) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (f) at (0,2) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (g) at (3,0) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (h) at (2,1) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (i) at (1,2) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (j) at (0,3) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (k) at (4,0) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (l) at (3,1) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (m) at (2,2) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (n) at (1,3) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (o) at (0,4) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (p) at (5,0) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (q) at (4,1) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (r) at (3,2) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (s) at (2,3) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (t) at (1,4) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (u) at (0,5) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (v) at (6,0) {}; \node[draw,circle,inner sep=0.1cm,fill=white] (w) at (5,1) {}; \draw (a) -- (b) -- (c) -- (d) -- (e) -- (a); \draw (a) -- (f) -- (c); \draw (b) -- (g) -- (d); \draw (c) -- (h) -- (e); \draw (d) -- (i) -- (a); \draw (e) -- (j) -- (b); \draw (f) -- (k); \draw (g) -- (k); \draw (h) -- (k); \draw (i) -- (k); \draw (j) -- (k); %G_4 \draw (a) \endtikzpicture Starting with $C_5$, I constructed $G_4$ and then $G_5$ outwards from the origin. AAAAAAAHHHHHHH. I have decided to complete this on paper. } \question{% Q3 - (Chapter 5, Exercise 31) Exhibit a planar drawing of an eulerian planar graph with 10 vertices and 21 edges. }{ } \question{% Q4 - (Chapter 5, Exercise 32) Show that every planar graph has a vertex that is incident to at most five edges. }{} \bye