From a31c07408cfd10b82e3228ccb0b0c9dcd5a33a4b Mon Sep 17 00:00:00 2001 From: Holden Rohrer Date: Tue, 20 Oct 2020 11:34:37 -0400 Subject: hw 5 part ii /houdre --- houdre/hw5ii.tex | 45 ++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 42 insertions(+), 3 deletions(-) diff --git a/houdre/hw5ii.tex b/houdre/hw5ii.tex index 3e99232..51b3208 100644 --- a/houdre/hw5ii.tex +++ b/houdre/hw5ii.tex @@ -23,16 +23,55 @@ \def\q{\afterassignment\qq\qnum=} \def\qq{\qqq{\number\qnum}} \def\qqq#1{\bigskip\goodbreak\noindent{\bf#1)}\smallskip} -\def\fr#1#2{{#1\over #2}} -\def\var{\mathop{\rm var}\nolimits} -\def\infint{\int_{-\infty}^\infty} +\def\align#1{\vcenter{\halign{$##\hfil$&&$\hfil##$\cr#1}}} +\tabskip=1em \q7 +By continuity, $X$ has a density function, so +$$\E(X) = \int_0^\infty xf_X(x) dx = +x(F_X(x)-1)\big|_0^\infty - \int_0^\infty (F_X(x)-1) dx,$$ +by integration by parts. +Because $xF_X(x)|_0^\infty = 0,$ (since $\Pr(X\leq\infty)-1 = 0.$) +$$\E(X) = \int_0^\infty 1-F_X(x)dx.$$ + \q9 +$$F_{X'}(x) = \bigg\{\align{ + F_X(x)&\hbox{if }x0,\cr + 0&\hbox{if }x\leq0.\cr}$$ +$$Y = (X-2)/(X+1) \to YX+Y = X-2 \to (Y-1)X = -(2+Y) +\to X = -(2+Y)/(Y-1).$$ +$$dX/dY = -{3\over(Y-1)^2}.$$ +By 5.52, since $g(x)$ is strictly decreasing, +$$\align{f_Y(y)&=&-f_X\left(-{2+y\over y-1}\right) + \left(-{3\over(y-1)^2}\right)\hfill\cr + &=&\bigg\{\align{ + e^{2+y\over y-1}{3\over(y-1)^2}&-20,\cr + \hfil 0&{\rm otherwise}.\cr}$$ + \bye -- cgit