From a31c07408cfd10b82e3228ccb0b0c9dcd5a33a4b Mon Sep 17 00:00:00 2001
From: Holden Rohrer
Date: Tue, 20 Oct 2020 11:34:37 -0400
Subject: hw 5 part ii /houdre
---
houdre/hw5ii.tex | 45 ++++++++++++++++++++++++++++++++++++++++++---
1 file changed, 42 insertions(+), 3 deletions(-)
(limited to 'houdre')
diff --git a/houdre/hw5ii.tex b/houdre/hw5ii.tex
index 3e99232..51b3208 100644
--- a/houdre/hw5ii.tex
+++ b/houdre/hw5ii.tex
@@ -23,16 +23,55 @@
\def\q{\afterassignment\qq\qnum=}
\def\qq{\qqq{\number\qnum}}
\def\qqq#1{\bigskip\goodbreak\noindent{\bf#1)}\smallskip}
-\def\fr#1#2{{#1\over #2}}
-\def\var{\mathop{\rm var}\nolimits}
-\def\infint{\int_{-\infty}^\infty}
+\def\align#1{\vcenter{\halign{$##\hfil$&&$\hfil##$\cr#1}}}
+\tabskip=1em
\q7
+By continuity, $X$ has a density function, so
+$$\E(X) = \int_0^\infty xf_X(x) dx =
+x(F_X(x)-1)\big|_0^\infty - \int_0^\infty (F_X(x)-1) dx,$$
+by integration by parts.
+Because $xF_X(x)|_0^\infty = 0,$ (since $\Pr(X\leq\infty)-1 = 0.$)
+$$\E(X) = \int_0^\infty 1-F_X(x)dx.$$
+
\q9
+$$F_{X'}(x) = \bigg\{\align{
+ F_X(x)&\hbox{if }x0,\cr
+ 0&\hbox{if }x\leq0.\cr}$$
+$$Y = (X-2)/(X+1) \to YX+Y = X-2 \to (Y-1)X = -(2+Y)
+\to X = -(2+Y)/(Y-1).$$
+$$dX/dY = -{3\over(Y-1)^2}.$$
+By 5.52, since $g(x)$ is strictly decreasing,
+$$\align{f_Y(y)&=&-f_X\left(-{2+y\over y-1}\right)
+ \left(-{3\over(y-1)^2}\right)\hfill\cr
+ &=&\bigg\{\align{
+ e^{2+y\over y-1}{3\over(y-1)^2}&-20,\cr
+ \hfil 0&{\rm otherwise}.\cr}$$
+
\bye
--
cgit