From 61b48fd8baae321daf294ebf670ef4906240d260 Mon Sep 17 00:00:00 2001 From: Holden Rohrer Date: Wed, 5 May 2021 19:03:09 -0400 Subject: homeworks and attendance quizzes for kang --- kang/hw10.tex | 153 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 153 insertions(+) create mode 100644 kang/hw10.tex (limited to 'kang/hw10.tex') diff --git a/kang/hw10.tex b/kang/hw10.tex new file mode 100644 index 0000000..198067a --- /dev/null +++ b/kang/hw10.tex @@ -0,0 +1,153 @@ +\def\Res{\mathop{\rm Res}} +\let\rule\hrule +\def\hrule{\medskip\rule\medskip} + +%page 237 +\noindent{\bf 3.} + +With +$$f(z) = {4z-5\over z(z-1)},$$ + +$$\int_C f(z)dz = -2\pi i\Res_{z=\infty}f(z) = +2\pi i\Res_{z=0}{1\over z^2}f\left({1\over z}\right) = +2\pi i\Res_{z=0}{z(4 - 5z) \over z^2(1 - z)}.$$ + +$${z(4-5z)\over z^2(1-z)} = (4/z-5)(1+z+z^2+\cdots) \to b_1 = 4.$$ +Therefore, the value of the integral is $8\pi i.$ + +\hrule +%page 242 +\noindent{\bf 1.} + +\noindent{\it (a)} + +$$f(z) = z\exp\left({1\over z}\right) = z\left(1 + {1\over z} + +{1\over 2z^2} + \cdots\right),$$ +giving principal part +$${1\over 2z} + {1\over 6z^2} + \cdots,$$ +meaning that $z=0$ is an essential singular point. + +\noindent{\it (b)} + +$$f(z) = {z^2\over 1+z} = {z^2\over 1 - (-z)} = z^2 - z + 1 - {1\over z} ++ {1\over z^2} + \cdots,$$ +giving principal part +$$-{1\over z} + {1\over z^2} + \cdots,$$ +demonstrating an essential singular point at $z=0.$ + +\noindent{\it (c)} + +$$f(z) = {\sin z\over z} = 1 - {z^2\over 3!} + {z^4\over 5!} - {z^6\over +7!}.$$ +The principal part is $0,$ so $z=0$ is a removable singular point. + +\noindent{\it (d)} + +$$f(z) = {\cos z\over z} = {1\over z} - {z\over 2!} + {z^3\over 4!} + +\cdots,$$ +giving principal part $1/z,$ meaning $z=0$ is a simple pole. + +\noindent{\it (e)} + +$$f(z) = {1\over (2-z)^3} = -{1\over (z-2)^3}$$ +is a complete Laurent series, and also its principal part, telling us +there is a pole of order 3 at $z=2.$ + +\noindent{\bf 3.} + +\noindent{\it (a)} + +If $f(z_0) \neq 0,$ $f(z)$ has Taylor series representation $a_0 + +{a_1(z-z_0)\over 1!} + {a_2(z-z_0)^2\over 2!} + {a_3(z-z_0)^3\over 3!} ++ \cdots.$ Therefore, $g(z)$ has Laurent series representation +${a_0\over z-z_0} + a_1 + {a_2(z-z_0)\over 2!} + {a_3(z-z_0)^3\over 3!},$ +evidencing a simple pole. + +\noindent{\it (b)} + +Similarly, if $f(z_0) = 0,$ $g(z)$ has Taylor series ${a_1\over 1!} + +{a_2(z-z_0)\over 2!} + {a_3(z-z_0)^2\over 3!},$ with principal part $0$ +and a removable singular point. + +\hrule +%page 246 +\noindent{\bf 3.} + +\noindent{\it (a)} + +$\sinh z/z = f(z)$ is non-zero and analytic at $z=0,$ meaning that +$g(z) = \sinh z/z^4 = f(z)/z^3$ has a pole of order 3 at $z=0.$ +The Laurent series of $\sinh z/z^4$ is ${1\over z^3} + {1\over 3!z} + +{z\over 5!} + \cdots,$ giving a residue of $1/6.$ + +\noindent{\it (b)} + +$${1\over z(e^z - 1)} = {1\over z(1+z+{z^2\over 2}+{z^3\over +6}+\cdots-1)} = {1\over z^2(1 + {z\over 2} + {z^2\over 6} + \cdots)} = +{1\over z^2}{1\over 1 - (-{z\over 2} - {z^2\over 6} - \cdots)},$$ +and by the standard $1/(1-z)$ expansion since this series is less than 1 +(it equals ${e^z - 1\over z}-1,$ which is near 0 about $z=0,$ which can +be verified by L'hospital's rule), +$$ = {1\over z^2} - {1\over 2z} - {1\over 6} + \cdots$$ + +This is a residue of $-1/2.$ + +\noindent{\bf 5.} + +\noindent{\it (a)} + +$|z|=2$ contains the singular point at $z=0,$ and $f(z)$ can be defined +as +$$\phi(z)\over z^3$$ where $\phi(z) = 1/(z+4),$ which is analytic within +the region. The residue is $\phi''(0)/2! = {2/(0+4)^3\over 2} = 1/64.$ +This gives the integral a value of $2\pi i/64 = \pi i/32.$ + +\noindent{\it (b)} + +This region contains both singularities at $z=0$ and $z=-4,$ and its +residue is the sum of theirs. +We have already evaluated the residue at $z=0,$ so we will now evaluate +the residue at $z=-4.$ +$$f(z) = {{1\over z^3}\over z+4} = {\phi(z)\over z+4}.$$ +This has residue $\phi(-4) = -1/64.$ +With the residue at $z=0,$ this gives a sum total of $0.$ + +\noindent{\bf 6.} + +$C$ contains singularities at $-i,$ $0,$ and $i.$ +At $z=0,$ +$$f(z) = {\phi(z)\over z},$$ +with +$$\phi(z) = {\cosh \pi z\over z^2+1}.$$ +This tells us the residue is $\phi(0) = \cosh 0/1 = 1.$ + +Similarly, $z=i$ has +$$f(z) = {\phi(z)\over z-i},$$ +with +$$\phi(z) = {\cosh \pi z\over z(z+i)} \to \phi(i) = +{\cosh(\pi i)\over -2} = {1\over 2}.$$ + +And $z=-i$ has +$$f(z) = {\phi(z)\over z+i},$$ +with +$$\phi(z) = {\cosh \pi z\over z(z-i)} \to \phi(i) = +{\cosh(-\pi i)\over 2} = {1\over 2}.$$ + +The sum residue is $2,$ giving the integral a value of $2\cdot 2\pi i = +4\pi i.$ + +\iffalse +$C$ contains all singularities, so the integral can be determined as +$2\pi i\Res_{z=\infty} f(z).$ + +$${1\over z^2}f\left({1\over z}\right) = +{z^3\cosh(\pi/z) \over 1+z^2} = +{z^3\over 1+z^2}\left(1 + {(\pi/z)^2\over 2!} + {(\pi/z)^4\over +4!}\right) = + +%{1\over 1+z^2}\left(z^3 + {z\pi^2\over 2!} + {\pi^4\over 4!z} + +%{\pi^6\over 6!z^3} + \cdots\right) +$$ +\fi + +\bye -- cgit