From 61b48fd8baae321daf294ebf670ef4906240d260 Mon Sep 17 00:00:00 2001 From: Holden Rohrer Date: Wed, 5 May 2021 19:03:09 -0400 Subject: homeworks and attendance quizzes for kang --- kang/hw3.tex | 84 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 84 insertions(+) create mode 100644 kang/hw3.tex (limited to 'kang/hw3.tex') diff --git a/kang/hw3.tex b/kang/hw3.tex new file mode 100644 index 0000000..32cb710 --- /dev/null +++ b/kang/hw3.tex @@ -0,0 +1,84 @@ +\def\Re{\mathop{\rm Re}\nolimits} +\def\Im{\mathop{\rm Im}\nolimits} + +% page 54 +\noindent{\bf 7.} + +By the triangle theorem, +$$|f(z)-w_0|+|w_0| \geq |f(z)| \to ||f(z)|-|w_0|| \leq +|f(z)-w_0|<\delta,$$ +where $|z-z_0|<\epsilon$ by definition of the first limit. +% not sure how to prove the abs transformation + +This shows that, as $z\to z_0,$ $|f(z)| \to |w_0|,$ because for all +$\epsilon,$ there exists $\delta$ such that $||f(z)|-|w_0||\leq\delta.$ + +\noindent{\bf 11.} + +\noindent{\it (a)} + +$\lim_{z\to\infty} T(z) = \infty$ is true iff $$\lim_{z\to 0} +T(z^{-1})^{-1} = 0 = \lim_{z\to 0} {d\over az^{-1}+b} = \lim_{z\to 0} +{d\over z^{-1}(a+bz)} = \lim_{z\to 0} {zd\over a+bz} = +(\lim_{z\to 0} zd)/(\lim_{z\to 0} a+bz).$$ + +$ad+bc \neq 0 \to ad \neq 0 \to a\neq0, d\neq0,$ so this becomes $0/a = +0,$ and the theorem is proved. + +\noindent{\it (b)} + +When $c\neq 0$, $\lim_{z\to\infty} T(z) = a/c$ if +$$\lim_{z\to 0} T(z^{-1}) = a/c = {az^{-1}+b\over cz^{-1}+d} += {z^{-1}(a+bz)\over z^{-1}(c+dz)} = {a+bz\over c+dz} = {\lim_{z\to 0} +a+bz\over \lim_{z\to 0} c+dz} = a/c.$$ + +$\lim_{z\to -d/c} T(z) = \infty$ if $$\lim_{z\to -d/c} {cz+d\over az+b} += 0 = {\lim_{z\to -d/c} cz+d\over\lim_{z\to -d/c} az+b} = {0\over k} = 0,$$ + +and $k\neq 0$ because $ad-bc\neq0 \to -ad/c + b \neq 0.$ + +% page 61 +\noindent{\bf 2.} + +\noindent{\it (a)} + +$f'(z) = (3z^2)' + (-2z)' + 4' = 6z - 2,$ by the addition rule of +derivatives, $(af(x))' = af'(x),$ and the power rule. + +\noindent{\it (b)} + +By the chain rule, $g(w) = w^5,$ and $w = f(z) = 2z^2 + i,$ $$F'(z) = +g'(w)f'(z) = 5w^4 \cdot 4z = 20(2z^2+i)^4z,$$ +with the power rule. + +\noindent{\it (c)} + +${z-1\over 2z+1} = (z-1)(2z+1)^{-1},$ so this can be solved with the +product and chain rules: +$${d\over dz} {z-1\over 2z+1} = (2z+1)^{-1} - {2(z-1)\over (2z+1)^2}.$$ + +\noindent{\it (d)} + +With the product rule, and $f(z) = (1+z^2)^4$ and $g(z) = z^{-2},$ +$$F'(z) = f'(z)g(z) + f(z)g'(z) += {8z(1+z^2)^3\over z^2} - 2{(1+z^2)^4\over z^3}$$ +because $f'(z) = 8z(1+z^2),$ by the chain rule with $h(z) = 1+z^2 \to +h'(z) = 2z$ and +$k(z) = w^4 \to k'(z) = 4w^3.$ + +\noindent{\bf 8.} + +\noindent{\it (a)} + +When $f(z) = \Re(z),$ $\delta w = \Re(z+\delta z) - \Re(z) = \Re(\delta +z).$ $f'(z) = \delta w/\delta z = \Re(\delta z)/\delta z$ is, if $z = +\epsilon,$ (and $\epsilon$ is real) 1, but if $z = i\epsilon,$ $f'(z) = +0/(i\epsilon) = 0.$ Therefore, the derivative DNE. + +\noindent{\it (b)} + +Similarly, $f(z) = \Im(z)$ gives $f'(z) = \Im(\delta z)/\delta z,$ +which, for $z = i\epsilon,$ is 1, but for $z = \epsilon,$ $f'(z) = 0.$ +Therefore, the derivative also DNE. + +\bye -- cgit