\newfam\rsfs \newfam\bbold \def\scr#1{{\fam\rsfs #1}} \def\bb#1{{\fam\bbold #1}} \let\oldcal\cal \def\cal#1{{\oldcal #1}} \font\rsfsten=rsfs10 \font\rsfssev=rsfs7 \font\rsfsfiv=rsfs5 \textfont\rsfs=\rsfsten \scriptfont\rsfs=\rsfssev \scriptscriptfont\rsfs=\rsfsfiv \font\bbten=msbm10 \font\bbsev=msbm7 \font\bbfiv=msbm5 \textfont\bbold=\bbten \scriptfont\bbold=\bbsev \scriptscriptfont\bbold=\bbfiv \def\Pr{\bb P} \def\E{\bb E} \newcount\qnum \def\q{\afterassignment\qq\qnum=} \def\qq{\qqq{\number\qnum}} \def\qqq#1{\bigskip\goodbreak\noindent{\bf#1)}\smallskip} \def\fr#1#2{{#1\over #2}} \q2 $U$ and $V$ are pairwise independent, and $$\Pr(W=1) = \Pr(U=1)\Pr(V=1) + \Pr(U=-1)\Pr(V=-1)$$$$= ab + (1-a)(1-b) = ab + 1 -a -b + ab.$$ If $W$ is pairwise independent with $U$, $$\Pr(W) = \Pr(W=1|U=1) = \Pr(V=1) = b = ab + 1 -a -b + ab$$$$\Longrightarrow 2b - 2ab = 1 -a = 2b(1-a)$$$$\Longrightarrow b = \fr12.$$ By a similar derivation, $a = \fr12.$ The three variables ${U,V,W}$ are not independent. If they were, $\Pr(W=1|U=1) = b = \Pr(W=1|U=1|V=1) = 1.$ $b\neq1$, so the variables are not independent. \q3 Both $X$ and $Y$ can be transformed into Bernoulli trials. This property is both necessary and sufficient for independence of a pair of Bernoulli trials. Necessity is shown by theorem 3.19, and it is sufficient because $$\E(XY) = \Pr(X=1)\Pr(Y=1|X=1) = \Pr(X=1)\Pr(Y=1) = \E(X)\E(Y) \to \Pr(Y=1) = \Pr(Y=1|X=1),$$ so this holds for $X$ and $Y$. \q5 $$\Pr(Z=\min(X,Y)>z) = \Pr(X>z\cap Y>z) = \Pr(X>z)\Pr(Y>z),$$ by independence. $$\Pr(X>z) = (1-p)^z \Longrightarrow \Pr(X>z)\Pr(Y>z) = (1-p)^z(1-r)^z = (1-p-r+pr)^z.$$ $$\Pr(Z=z) = \Pr(Z>z-1) - \Pr(Z>z) = (1-p-r+pr)^{z-1} - (1-p-r+pr)^z = (p+r-pr)(1-p-r+pr)^{z-1},$$ so $Z$ is a random variable following a geometric distribution with parameter $p+r-pr.$ \q7 $$\E(X_1 + X_2 +\cdots+ X_N) = \sum_{n\in N} \Pr(N=n)\E(\sum_{i=1}^n X_i).$$$$ \E(\sum_{i=1}^n X_i) = \sum_{\omega\in\Omega}\sum_{i=1}^n \Pr(\omega)X_i(\omega) = \sum_{i=1}^n\sum_{\omega\in\Omega} \Pr(\omega)X_i(\omega) = \sum_{i=1}^n\E(X_i) = n\mu.$$$$\Rightarrow \E(X_1+\cdots+X_N) = \sum_{n\in N} \Pr(N=n)\mu = \mu\E(N).$$ \q12 When $i$ coupons have been collected out of $c$, the probability of collecting a new coupon is $(c-i)/c$, so the probability of collecting a new coupon on the $n$th trial (and not having collected one before) is $((c-i)/c)*(1 - (c-i)/c)^{n-1}$. This is the geometric distribution on parameter $(c-i)/c$. The expected value of a geometric distribution is $1/p$ where $p$ is the parameter because $$\E(X) = \sum_{i=1}^\infty i\Pr(X=i) = \sum_{i=1}^\infty \sum_{j=1}^i pq^{i-1} = \sum_{j=1}^\infty \sum_{i=j}^\infty pq^{i-1}$$$$ = \sum_{j=1}^\infty q^{j-1}\sum_{i=1}^\infty pq^{i-1} = \sum_{j=1}^\infty q^{j-1} = (1/p)\sum_{j=1}^\infty pq^{j-1} = 1/p.$$ This means that the expected number of coupons collected before we have a complete set is $\sum_{i=1}^c c/(c-i).$ % seriously needs to be proofread and checked for fit on the page \q13 Suppose a string of $n$ coupons has $i$ unique coupons. This means $n-i$ duplicate coupons have been collected, each of which has a probability $i/c$ of being collected instead of a new/unique coupon. The probability of a unique coupon being chosen is shown to be $(c-k)/c$ in the question above, which means there must be $i$ coupon collections of probabilities $c/c, (c-1)/c, (c-2)/c, \ldots, (c-i-1)/c$. The product of these two is $$\left({i\over c}\right)^{n-i}{c!\over(c-i)!c^i} = {i^{n-i}c!\over(c-i)!c^n}.$$ $$\E(n) = \sum_{i=1}^n i{i^{n-i}c!\over(c-i)!c^n}$$ \q14 $X$ and $Y$ are binomial distributions for a fixed value of $N$. With $p_N = \lambda^m\fr1{m!}e^{-\lambda},$ $p_X = {N\choose k}p^kq^{N-k}$. Conditioning on $N,$ $$\Pr(X=k) = \sum_{i=1}^\infty \Pr(N=i){i\choose k}p^kq^{i-k} = \sum_{i=1}^\infty \lambda^i\fr1{i!}e^{-\lambda}{i\choose k}p^kq^{i-k} $$$$ = {1\over k!}p^k\sum_{i=1}^\infty{e^{-\lambda}\lambda^iq^{i-k}\over(i-k)!} = {1\over k!}p^k\lambda^ke^q \sum_{i=1}^\infty{e^{-q\lambda}(q\lambda)^{i-k}\over(i-k)!} = {(p\lambda)^ke^q\over k!} .$$ By a similar calculation, $\Pr(Y=k) = {(q\lambda)^ke^p\over k!}.$ To prove independence, $\Pr(X=x) = \Pr(X=x|Y=y) = \Pr(X=x|N=x+y)$, which are $$\Pr(X=x) = {(p\lambda)^xe^q\over x!} = {{x+y\choose x}p^xq^y \over \lambda^{x+y}e^{-\lambda}\fr1{(x+y)!}} = \Pr(X=x|N=x+y).$$ $$\lambda^{2x+y}e^q = {(x+y)!q^y(x+y)! \over e^{-\lambda}y!}.$$ \qqq{3.37} \def\var{\mathop{\rm var}\nolimits} Let $A_i$ be the $i$th king/queen pair sitting next to eachother: $$N = \sum_{i=1}^n 1_{A_i}.$$ This means $$\E(N) = \E(\sum_{i=1}^n \E(1_{A_i}) = \sum_{i=1}^n\E(1_{A_i}) = \sum_{i=1}^n\Pr(A_i) = n\Pr(A_1),$$ by symmetry. $\Pr(A_1) = 2/n$ because there are $n$ seats available to any given king and $2$ possible seats to sit next to his queen, and $\E(N) = n(2/n)=2.$ $\var(N) = \E(N^2) - \E(N)^2,$ so we need $\E(N^2).$ $$\E(N^2) = \E\left(\left[\sum_i 1_{A_i}\right]^2\right) = \E\left(\sum_i (1_{A_i}^2 = 1_{A_i}) + \sum_{i\neq j}(1_{A_i}1_{A_j} = 1_{A_i\cap A_j})\right).$$ By symmetry, this is equal to $$n\Pr(A_1) + n(n-1)\Pr(A_1\cap A_2),$$ and the second can be solved with conditional probability: $$\Pr(A_1\cap A_2) = \Pr(A_1)\Pr(A_2|A_1) = \fr2n\left(\fr1{n-1}\cdot\fr1{n-1} + \fr{n-2}{n-1}\cdot\fr2{n-1}\right) = {2(2n-3)\over n(n-1)^2}.$$ The first term corresponds to the second queen sitting next to the first couple and the second term is that not happening. This leaves $$\var(N) = \E(N^2) - \E(N)^2 = \left(2 + {2(2n-3)\over n-1}\right) - 4 = {2n-4\over n-1}.$$ \bye