\newfam\rsfs \newfam\bbold \def\scr#1{{\fam\rsfs #1}} \def\bb#1{{\fam\bbold #1}} \let\oldcal\cal \def\cal#1{{\oldcal #1}} \font\rsfsten=rsfs10 \font\rsfssev=rsfs7 \font\rsfsfiv=rsfs5 \textfont\rsfs=\rsfsten \scriptfont\rsfs=\rsfssev \scriptscriptfont\rsfs=\rsfsfiv \font\bbten=msbm10 \font\bbsev=msbm7 \font\bbfiv=msbm5 \textfont\bbold=\bbten \scriptfont\bbold=\bbsev \scriptscriptfont\bbold=\bbfiv \def\Pr{\bb P} \def\E{\bb E} \newcount\qnum \def\q{\afterassignment\qq\qnum=} \def\qq{\qqq{\number\qnum}} \def\qqq#1{\bigskip\goodbreak\noindent{\bf#1)}\smallskip} \def\fr#1#2{{#1\over #2}} \def\var{\mathop{\rm var}\nolimits} \def\infint{\int_{-\infty}^\infty} \q1 The mean of this distribution $\E(X)$ is $$\E(X) = \infint xf(x) dx.$$ This integral evaluates to 0 by symmetry because $f(x) = {1\over2}ce^{-c|x|}$ is an even function, so $xf(x)$ is odd. The variance of this distribution is $\var(X) = \E(X^2) - \E(X)^2 = \E(X^2).$ By theorem 5.58, $$\E(X^2) = \infint x^2f(x) dx = \infint x^2{1\over2}ce^{-c|x|} dx = \int_0^\infty x^2ce^{-cx} dx = ce^0{2\over c^3} = 2c^{-2}.$$ by repeated integration by parts \q2 $$\Pr(X\geq w) = \sum_{k=w}^\infty {1\over k!}\lambda^ke^{-\lambda}.$$ $$\Pr(Y\leq \lambda) = \int_0^\lambda {1\over\Gamma(w)} x^{w-1}e^{-x}dx = \int_0^\lambda {x^{w-1}e^{-x}\over (w-1)!} dx,$$ because $\Gamma(w) = (w-1)!$ We are going to prove this equality by induction on $w$. It is true for $w=1$ because the Poisson distribution will sum to $1-e^{-\lambda}$ (because $\Pr(X\geq0) = 1$ and $\Pr(X<1) = \Pr(X=0) = e^{-\lambda}\lambda^0/0!.$) The Gamma distribution is ${1\over\Gamma(1)}\int_0^\lambda x^0e^{-x}dx = -e^{-x}\big|^\lambda_0 = -e^{-\lambda} + 1.$ Assuming the following equality holds for $w,$ it will be shown to hold for $w+1$: $$\sum_{k=w}^\infty {1\over k!}\lambda^ke^{-\lambda} = \int_0^\lambda {x^{w-1}e^{-x}\over (w-1)!} dx.$$ $$\sum_{k=w}^\infty {1\over k!}\lambda^ke^{-\lambda} = {1\over w!}\lambda^we^{-\lambda} + \sum_{k=w+1}^\infty {\lambda^ke^{-\lambda}\over k!}.$$ $${1\over (w-1)!}\int_0^\lambda x^{w-1}e^{-x}dx = {1\over (w-1)!}\left({x^we^{-x}\over w}\big|^\lambda_0 + \int_0^\lambda {x^we^{-x}\over w} dx\right) = {\lambda^we^{-\lambda}\over w!} + \int_0^\lambda {x^we^{-x}\over \Gamma(w+1)} dx$$ by integration by parts. $$\Longrightarrow \sum_{k=n+1}^\infty {\lambda^ke^{-\lambda}\over k!} = \int_0^\lambda {x^we^{-x}\over \Gamma(w+1)} dx.$$ QED \q3 The density function $f(x)$ is proportional, so there is some constant $c$ such that $$1 = \infint f(x)dx = c\infint g(x)dx = 2c\int_1^\infty x^{-n}dx = 2c\left(-{x^{1-n}\over n-1}\right)\big|^\infty_1 = 2c\left({1\over n-1}\right) \to c = {n-1\over2}.$$ $$f(x) = {n-1\over2}g(x),$$ and this will look like a vertically stretched $1/x^2$ graph. The mean and variance of $X$ exist when $\E(X)$ and $\E(X^2)$ exist, respectively. The first exists when $n>2$ because for $n=2,$ $$\E(X) = \int_1^\infty xx^{-n}dx = \ln(x)\big|^\infty_1,$$ and, similarly for $\E(X^2)$ under $n\leq3.$ $n>3$ is the condition that it exists because $$\int_1^\infty x^2x^{-n}dx = \ln(x)\big|^\infty_1,$$ for $n=3$ (and $\int\ln(x)dx$ for $n=2$). \q4 The density function of $Y=|X|$ is: $$\{x\geq0: {2\over\sqrt{2\pi}}\exp(-{1\over2}x^2).\hbox{ 0 otherwise.}\}$$ $$\E(Y) = \int_0^\infty {2x\over \sqrt{2\pi}}\exp(-{1\over2}x^2)dx = {1\over\sqrt{2\pi}}\int_0^\infty\exp(-\fr u2)du,$$ by u-substitution, becoming $$-{2\over\sqrt{2\pi}}e^{-u\over2}\big|_0^\infty = {\sqrt{2}\over\sqrt{\pi}}.$$ Similarly, $\var(x) = \E(Y^2) - \E(Y)^2.$ $$\E(Y^2) = \int_0^\infty {2x^2\over \sqrt{2\pi}}\exp(-\fr12 x^2)dx = -{2\over\sqrt{2\pi}}x\exp(-\fr12 x^2)\big|^\infty_0 - {2\over\sqrt{2\pi}}\int_0^\infty -e^{-\fr12 x^2}dx,$$ by integration by parts, turning into $$0 + 1,$$ because the first evaluates to zero at both extrema and the second is the distribution function of the normal distribution so integrates to 1. \bye