\newfam\rsfs \newfam\bbold \def\scr#1{{\fam\rsfs #1}} \def\bb#1{{\fam\bbold #1}} \let\oldcal\cal \def\cal#1{{\oldcal #1}} \font\rsfsten=rsfs10 \font\rsfssev=rsfs7 \font\rsfsfiv=rsfs5 \textfont\rsfs=\rsfsten \scriptfont\rsfs=\rsfssev \scriptscriptfont\rsfs=\rsfsfiv \font\bbten=msbm10 \font\bbsev=msbm7 \font\bbfiv=msbm5 \textfont\bbold=\bbten \scriptfont\bbold=\bbsev \scriptscriptfont\bbold=\bbfiv \def\Pr{\bb P} \def\E{\bb E} \newcount\qnum \def\q{\afterassignment\qq\qnum=} \def\qq{\qqq{\number\qnum}} \def\qqq#1{\bigskip\goodbreak\noindent{\bf#1)}\smallskip} \def\align#1{\vcenter{\halign{$\displaystyle##\hfil$\tabskip1em&& $\hfil\displaystyle##$\cr#1}}} \def\fr#1#2{{#1\over #2}} \def\var{\mathop{\rm var}\nolimits} \def\infint{\int_{-\infty}^\infty} \def\pa#1#2{\partial#1/\partial#2} \q1 $$\Pr(U\leq z) = \Pr(XY\leq z) = \int_0^\infty\int_{-\infty}^{z/x} f_{X,Y}(x,y) dydx + \int_{-\infty}^0\int_{z/x}^\infty f_{X,Y}(x,y) dydx $$$$= \int_0^\infty \int_{-\infty}^z f_{X,Y}(x,u/x){1\over x}dudx - \int_{-\infty}^0 \int_{-\infty}^z f_{X,Y}(x,u/x){1\over x}dudx = \infint \int_{-\infty}^z f_{X,Y}(x,u/x){1\over|x|}dudx $$$$ \Longrightarrow f_U(u) = \infint f_X(x)f_Y(u/x){1\over|x|}dx,$$ by independence, from the derivative of $\Pr(U\leq z).$ $$\Pr(V\leq z) = \Pr(X/Y\leq z) = \int_0^\infty \int_{-\infty}^{zy} f_{X,Y}(x,y)dxdy + \int_{-\infty}^0 \int_{zy}^\infty f_{X,Y}(x,y)dxdy$$$$ = \int_0^\infty\int_{-\infty}^{zy}f_{X,Y}(x,y)dxdy - \int_{-\infty^0} \int_{zy}^\infty f_{X,Y}(x,y)dxdy = \infint\int_{-\infty}^{zy}f_{X,Y}(x,y){|y|\over y}dxdy$$$$ \to {d\Pr(V\leq z)\over dz} = f_V(z) = \infint f_{X,Y}(zy,y)|y|dy,$$ taking the derivative with respect to $z,$ \q3 The quadratic equation has two distinct real roots when $$Y^2-4XZ>0 \to Y^2>4XZ \to 1>Y>\sqrt{4XZ}.$$ $$\sqrt{4XZ}<1 \to XZ<1/4 \to Z<1/(4X).$$ $$Z<1,$$ so any integral over this region must partition between $0X) = \int_0^\infty \int_x^\infty {1\over4}(x+3y)e^{-(x+y)} dy dx = {1\over4}\int_0^\infty -(x+3y)e^{-(x+y)} - 3e^{-(x+y)} \bigg|_{y=x}^\infty dx$$$$ = {1\over4}\int_0^\infty e^{-2x}(x+3x+3)dx = {1\over4}{1\over2}e^{-2*0}5 = {5\over8}.$$ \q11 \iffalse The probability density function of the distance between the landing point and the drop point is $D = \sqrt{(X_1^2-X_0)^2+(Y_1-Y_0)^2}.$ The probability density function of each of these variables is $$f(x) = {1\over\sqrt{2\pi\sigma^2}}e^{-{1\over2\sigma^2}x^2}$$ $$\E D = \infint\infint\infint\infint D(x_0,x_1,y_0,y_1)f(x_0)f(x_1)f(y_0)f(y_1)dx_0dx_1dy_0dy_1$$$$ = \infint\infint\int_0^{2\pi}\int_0^\infty r{1\over 4\pi^2\sigma^2}e^{-{1\over2\sigma^2}(x_0^2+y_0^2+(x_0+r\cos\theta)^2 + (y_0+r\sin\theta)^2)}rdrd\theta dx_0dy_0$$$$ = \int_0^\infty\int_0^{2\pi}\int_0^\infty\int_0^{2\pi} D{1\over4\pi^2\sigma^2}e^{-{1\over2\sigma^2}(r_\theta^2 + r_\phi^2)}r_\theta r_\phi d\theta dr_\theta d\phi dr_\phi.$$ \fi The joint probability density function of either location is the product of two normal distributions on $x$ and $y$: $$f_{X,Y}(x,y) = {1\over2\pi\sigma^2}e^{-{1\over2\sigma^2}(x^2+y^2)}.$$ The distance from $(0,0)$ is $r$ in a polar coordinate system. Transforming this into polar coordinates gives the Jacobian (with $x=r\cos\theta$ and $y=r\sin\theta$) $$J = \left|\matrix{\pa x\theta&\pa xr\cr\pa y\theta&\pa yr\cr}\right| = \left|\matrix{-r\sin\theta&\cos\theta\cr r\cos\theta&\sin\theta}\right| = -r\sin^2\theta - r\cos^2\theta = -r,$$ with the Pythagorean identity. $$f_{R,\Theta}(r,\theta) = f_{X,Y}(r\cos\theta,r\sin\theta)r = {r\over2\pi\sigma^2}e^{-r^2/(2\sigma^2)}$$ $$\E R = \int_0^\infty\int_0^{2\pi} r{r\over2\pi\sigma^2}e^{-r/(2\sigma^2)}d\theta dr = \int_0^\infty {r^2\over\sigma^2}e^{-r^2/(2\sigma^2)} dr$$$$ = -2re^{-r^2/(2\sigma^2)}\bigg|_0^\infty - \int_0^\infty -2e^{-r^2/(2\sigma^2)} dr = \int_0^\infty 2e^{-r^2/(2\sigma^2)}dr = \sigma\sqrt{\pi/2}.$$ $\var(R) = \E(R^2) - \E(R)^2,$ and $$\E(R^2) = \int_0^\infty \int_0^{2\pi} r^2 {r\over2\pi\sigma^2}e^{-r/(2\sigma^2)}d\theta dr = \int_0^\infty {r^3\over\sigma^2}e^{-r/(2\sigma^2)}dr$$$$ = -r^2e^{-r^2/(2\sigma^2)}\bigg|_0^\infty - \int_0^\infty -2re^{-r/(2\sigma^2)}dr = \int_0^\infty 2re^{-r^2/(2\sigma^2)}dr$$$$ = \int_0^\infty e^{-u/(2\sigma^2)}du = 2\sigma^2.$$ $2\sigma^2-\sigma^2\pi/2 = \var(R).$ \q15 $$f_X(x) = {1\over\sqrt{2\pi}}e^{-{1\over2}x^2}.$$ $$f_Y(y) = {1\over2\Gamma(\fr12n)}(\fr12x)^{\fr12n-1}e^{-\fr12x} \quad\hbox{on $y>0$}.$$ $$T={X\over\sqrt{Y/n}} \to X = T\sqrt{Y/n}.$$ $$J=\left|\matrix{\pa xt&\pa xy\cr \pa yt&\pa yy\cr}\right| = \left|\matrix{\sqrt{Y/n}&T/(2\sqrt{Y/n})\cr0&1\cr}\right| = \sqrt{Y/n}$$ $$\align{f_T(t) &=&{d\over dt}\int_0^\infty\int_{-\infty}^t f_X(z\sqrt{y/n})f_Y(y)Jdzdy\cr &=&\int_0^\infty f_X(t\sqrt{y/n})f_Y(y)\sqrt{y/n}dy\cr &=&\int_0^\infty {1\over\sqrt{2\pi}}e^{-\fr12t^2(y/n)} {1\over2\Gamma(\fr12n)}\sqrt{y}\left(\fr12y\right)^{\fr12n-1}e^{-\fr12y}\sqrt{y/n}dy\cr &=&{1\over\sqrt{2\pi}}{1\over2\Gamma(\fr12n)}\sqrt{1/n}\int_0^\infty e^{-\fr12y(t^2/n+1)}\left(\fr y2\right)^{\fr n2-1}\sqrt{y}dy\cr &=&{\sqrt2\over\sqrt{2\pi}}{1\over2\Gamma(\fr12n)}\sqrt{1/n}\int_0^\infty e^{-\fr12y(t^2/n+1)}\left(\fr y2\right)^{\fr {n-1}2}dy\cr &=&{\sqrt2\over\sqrt{2\pi}}{1\over2\Gamma(\fr12n)}\sqrt{1/n}\int_0^\infty e^{-u(t^2/n+1)}u^{\fr {n-1}2}2du\cr &=&{1\over\sqrt{n\pi}}{\Gamma(\fr12(n+1))\over\Gamma(\fr12n)} \left(1+{t^2\over n}\right)^{-\fr12(n+1)},\cr }$$ because $\int_0^\infty e^{-kx}x^n dx = \Gamma(n+1)/k^{n+1}$ (as may be discovered by repeated integration by parts and evaluation of that summation). \q20 $$f_{X,Y}(x,y) = \bigg\{\align{2&0Y)+\Pr(X=Y) = \Pr(X>Y).$ Therefore, $\Pr(\max\{X,Y\}\leq x) = \Pr(X\leq x)\Pr(Y\leq x) \to f_{\max\{X,Y\}}(x) = f(x)\Pr(Y\leq x) + \Pr(X\leq x)g(x) = 2\lambda e^{-\lambda v}(1-e^{-\lambda v}).$ \q26 $$X = 2U+V.$$ $$Y = V.$$ $$J(u,v) = \left|\matrix{\pa xu&\pa xv\cr\pa yu&\pa yv\cr}\right| = \left|\matrix{2& 0\cr 1 & 1\cr}\right| = 2.$$ $$f_{U,V}(u,v) = f_{X,Y}(x(u,v), y(u,v))J(u,v) = 2f_{X,Y}(2u+v, v) = {1\over2}e^{-{1\over2}(2u+v+v)} = {1\over2}e^{-u-v} \quad\hbox{when $(u,v)\in A$}$$ Given $x\geq 0, y\geq 0,$ $2u+v\geq 0 \to v \geq -2u,$ and $y = v\geq 0.$ For $u\geq0,$ $$f_U(u) = \int_0^\infty {1\over2}e^{-u-v}dv = {1\over2}e^{-u} \int_0^\infty e^{-v}dv = {1\over2}e^{-u} = {1\over2}e^{-|u|}.$$ and for $u<0,$ $$f_U(u) = \int_{-2u}^\infty {1\over2}e^{-u-v}dv = {1\over2}e^{-u} \int_{-2u}^\infty e^{-v}dv = {1\over2}e^{-u}(e^{2u}) = {1\over2}e^u = {1\over2}e^{-|u|}$$ \q0 Let $f(x,y) = 2\exp(-x-y),$ $0< x \leq y < +\infty,$ and $f(x,y) = 0$ elsewhere, be the joint pdf of $(X, Y)$ studied in our last lecture. Find $F_{(X,Y)}$ the joint cdf of $(X,Y)$ and $F_X$ the marginal cdf of $X$ as well as $F_Y$ the marginal cdf of $Y$. Does there exist positive values of $x$ and $y$ for which $F_{(X,Y)}(x,y) = F_X(x)F_Y(y)$? $$F_{(X,Y)}(x,y) = \int_{u=0}^y \int_{v=0}^{\min\{u,x\}} 2e^{-u-v} dvdu = \int_{u=0}^x \int_{v=0}^u 2e^{-u-v}dvdu + \int_{u=x}^y \int_{v=0}^x 2e^{-u-v}dvdu$$$$ = \int_{u=0}^x -2e^{-2u} + 2e^{-u}du + \int_{u=x}^y -2e^{-u-x}+2e^{-u}du$$$$ = (e^{-2x} - 2e^{-x}) - (e^0 - 2e^0) + (2e^{-y-x} - 2e^{-y}) - (2e^{-2x} - 2e^{-x}) = 1 + 2e^{-y-x} - 2e^{-y} - e^{-2x} = (1-2e^{-y})(1-e^{-2x}) $$ $$F_X(x) = \lim_{y\to\infty} F_{(X,Y)}(x,y) = 1-e^{-2x}.$$ Similarly, $$F_Y(y) = 1-2e^{-y}.$$ For all positive values of $x$ and $y,$ the given equality holds. \bye