\newfam\rsfs \newfam\bbold \def\scr#1{{\fam\rsfs #1}} \def\bb#1{{\fam\bbold #1}} \let\oldcal\cal \def\cal#1{{\oldcal #1}} \font\rsfsten=rsfs10 \font\rsfssev=rsfs7 \font\rsfsfiv=rsfs5 \textfont\rsfs=\rsfsten \scriptfont\rsfs=\rsfssev \scriptscriptfont\rsfs=\rsfsfiv \font\bbten=msbm10 \font\bbsev=msbm7 \font\bbfiv=msbm5 \textfont\bbold=\bbten \scriptfont\bbold=\bbsev \scriptscriptfont\bbold=\bbfiv \def\Pr{\bb P} \def\E{\bb E} \newcount\qnum \def\q{\afterassignment\qq\qnum=} \def\qq{\qqq{\number\qnum}} \def\qqq#1{\bigskip\goodbreak\noindent{\bf#1)}\smallskip} \def\align#1{\vcenter{\halign{$\displaystyle##\hfil$\tabskip1em&& $\hfil\displaystyle##$\cr#1}}} \def\fr#1#2{{#1\over #2}} \def\var{\mathop{\rm var}\nolimits} \def\cov{\mathop{\rm cov}\nolimits} \def\infint{\int_{-\infty}^\infty} \def\pa#1#2{\partial#1/\partial#2} \q2 $$\E\left(\fr1{n-1}\sum_{i=1}^n(X_i-\overline X)^2\right) = \E\left(\fr1{n-1}\sum_{i=1}^n(X_i-\mu - (\overline X - \mu))^2\right)$$$$ = \E\left(\fr1{n-1}\sum_{i=1}^n((X_i-\mu)^2-2(X_i-\mu)(\overline X-\mu) + (\overline X-\mu)^2)\right)$$$$ = \E\left(\fr1{n-1}\right) = \E\left(\fr1{n-1}(\sum_{i=1}^n(X_i-\mu)^2-n(\overline X-\mu)^2)\right) = \fr1{n-1}(n\sigma^2 - n\E(\overline X-\mu)^2)$$$$ = \fr1{n-1}(n\sigma^2 - n\E(({1\over n}(X_1-\mu)+\cdots+(X_n-\mu))^2) = \fr1{n-1}(n\sigma^2 - n\E(({1\over n}(X_1-\mu)+\cdots+(X_n-\mu))^2) $$$$ = \fr1{n-1}(n\sigma^2 - {1\over n} (\E((X_1-\mu)^2)+\cdots+\E((X_n-\mu)^2) + \E((X_1-\mu)(X_2-\mu))+\cdots) = \fr1{n-1}(n\sigma^2 - \sigma^2) = \sigma^2.$$ Note $\E((X_i-\mu)(X_j-\mu)) = \E(X_i-\mu)\E(X_j-\mu) = 0,$ when $i\neq j,$ by independence. \q3 $1 = \E(S_n/S_n) = n\E(X_1/S_n) \to \E(X_1/S_n) = 1/n,$ using linearity and symmetry. $\E(S_m/S_n) = m\E(X_1/S_n) = m/n.$ However, it is not necessary that $\E(X_k/S_n) \neq \E(X_1/S_n)$ for $k>n,$ so the equality doesn't necessarily hold for $m>n.$ \q8 The mgf is the product of the sum's components' mgf, or in other words $M_{X_1}(x)^n$ for $N=n.$ $M_U(ln(s)) = \E(e^{\ln(s)X}) = \E(s^X) = G_U(s),$ and the general mgf is $G_N(M_{X_1}(x)) = M_N(\ln(M_{X_1}(x))).$ \q10 Expanding $\cov(X,Y) = \E(XY)-\E(X)\E(Y)$ gives $$\cov(X,Y) = \E((X_1+\cdots+X_n)(Y_i+\cdots+Y_n))-\E(X_1+\cdots+X_n) \E(Y_1+\cdots+Y_n),$$ becomes, by linearity, $$\cov(X,Y) = \E(X_1Y_1)+\cdots+\E(X_1Y_n)\cdots+\E(X_nY_n) - (\E X_1 + \cdots + \E X_n)(\E Y_1 + \cdots + \E Y_n)$$ $$= \E(X_1Y_1) + \E(X_2Y_2) + \cdots + \E(X_nY_n),$$ by independence for $X_i,Y_j:i\neq j.$ By the earlier theorem, since each game is independent and identical, $\cov(X,Y) = n\cov(X_1,Y_1).$ $$\cov(X_1,Y_1) = \E(XY) - \E(X)\E(Y) = 2pq - (2p^2 + 2pq)(2q^2 + 2pq) = 2pq - 4p^2q^2 - 4p^3q - 4p^2q^2 - 4pq^3$$$$= 2pq - 4pq(2pq+p^2+q^2) = -2pq.$$ So $\cov(X,Y) = -2npq.$ \q14 The coupon collecting time to all coupons is the sum of geometric distributions with parameters $p=c/c,(c-1)/c\ldots1/c.$ The moment generating function of a geometric distribution is $$\sum_x^\infty e^{tx}\Pr(X=x) = \sum_x^\infty e^{tx}pq^x = \sum_x^\infty p(e^tq)^x = {p\over 1-e^tq}.$$ The moment generating function is therefore the product of this series of geometric moment generating functions: $${c!\over c^c}{1\over(1-e^t)(1-2e^t)\cdots(1-ce^t)}$$ \q17 $$f(x) = {1\over2}e^{-|x|} = {1\over2\pi}\infint e^{-itx}\phi(t)dt = {1\over2\pi}\infint e^{-itx}{1\over1+t^2}dt = {1\over2\pi}\infint -e^{itx}{1\over1+t^2}dt = {1\over2}e^{-|x|},$$ based on 7.80, using $\phi(t) = {1\over1+t^2}.$ \q18 The characteristic function of the Cauchy distribution is $e^{-|t|}.$ $$M_{A_n}(t) = \E(e^{itn^{-1}(X_1+\cdots+X_n)}) = \root n\of{M_{X_1}(t)^n} = M_{X_1}(t).$$ \q20 %deeply unsure By applying the partition theorem to $M(t) = \E(e^{tX}),$ we trivially get $$M(t) = \sum_{k=1}^\infty \Pr(N=k)\E(e^{tX}|N=k).$$ Given that $\Pr(N=k) = {1\over(e-1)k!}$ and Given these specific distributions, $$\Pr(X\leq x) = \Pr(U_1\leq x)\cdots\Pr(U_k\leq x) = x^n \to f_X(x) = nx^{n-1}$$$$ \to \E(X^j) = \int_0^1 x^jnx^{n-1}dx = \int_0^1 nx^{n+j}/(j+n)\to \E(e^{tX}|N=k) = \sum_{j=0}^\infty {1\over j!}t^jnx^{n+j}/(j+n)$$$$ \to M(t) = \sum_{k=1}^\infty {1\over(e-1)k!}\sum_{j=0}^\infty {1\over j!}t^jnx^{n+j}/(j+n).$$ using $\E(e^{tX}) = \sum_{n=0}^\infty {t^j\over j!}\E(X^j).$ The difference of $R$ and $X$ must be exponentially distributed because the quotient of their moment generating functions is similar to an exponential moment generating function. \bye