\noindent{\bf 2.} If $z = a + bi = (a,b),$ $iz = (0,1)(a,b) = (-b, a).$ ${\rm Re}(iz) = -b = -{\rm Im} z$ and ${\rm Im}(iz) = a = {\rm Re} z.$ \noindent{\bf 8.} \noindent{\it (a)} Given $(x,y) + (u,v) = (x,y),$ $(x+u,y+v) = (x,y),$ so $x+u = x$ and $y+v = y.$ Adding $-x$ and $-y$ to both sides, respectively, $-x+x+u = u = 0 = -x+x,$ and $-y+y+v = v = 0 = -y+y.$ The real additive identity is unique, so the complex additive identity is also unique. \noindent{\it (b)} $(x,y)(1,0) = (1x-0y,0x+1y) = (x,y),$ so a multiplicative identity $1$ exists. Let $1'$ also be a multiplicative identity. $$1 = 1'*1 = 1*1' = 1',$$ by the fact that, if $1$ is a multiplicative identity, $1z = z,$ and $ab = ba$ under the complex numbers. and $yu+xv = y \to xv = y-yu = y(1-u).$ If $x\neq0$ and $y\neq0,$ $xv/y = -yv/x$ Let $w = 1$ and $v = 1.$ \noindent{\bf 7.} $${z_1z\over z_2z} = \left({z_1\over z_2}\right) \left({z\over z}\right).$$ With $z = (x,y),$ from $(4),$ $${z\over z} = zz^{-1} = \left({x^2+y^2\over x^2+y^2},{yx-xy\over x^2+y^2}\right) = (1,0).$$ \bye