\def\Re{\mathop{Re}\nolimits} \def\Res{\mathop{Res}} \let\rule\hrule \def\fr#1#2{{#1\over#2}} \def\hrule{\goodbreak\medskip\rule\medskip\goodbreak} % page 282 \noindent{\bf 1.} With $$f(z) = {e^{iaz} - e^{ibz}\over z^2},$$ there is one singularity at 0, so by Cauchy-Goursat, $$\int_{C_\rho} f(z)dz + \int_{C_R} f(z)dz + \int_{-\infty}^0 f(z)dz + \int_0^\infty f(z)dz = 0,$$ where $C_\rho$ is the upper semicircle about $z=0,$ of radius $\rho\to0,$ and similar for $C_R$ where $R\to\infty.$ $$\int_{C_R} f(z)dz = \int_{C_R} {e^{iaz} - e^{ibz}\over z^2}dz = 0,$$ by Jordan's lemma. $$\int_{C_\rho} {e^{iaz} - e^{ibz} \over z^2} dz = -B_0\pi i = \pi(a-b),$$ by the theorem in this section. $$\int_{-\infty}^0 f(x)dx + \int_0^\infty f(x)dx = -\int_0^\infty f(-x)dx + \int_0^\infty f(x)dx =$$$$ \int_0^\infty {e^{iax} - e^{ibx} + e^{-iax} - e^{-ibx}\over x^2}dx % logical discontinuity! It should maybe be - e^{-iax} + e^{-ibx}. = 2\int{\cos(ax)-\cos(bx)\over x^2}dx,$$ which, by transformation of the original equality, gives $$2\int{\cos(ax)-\cos(bx)\over x^2}dx = -\pi(a-b) \to \int f(x)dx = {\pi\over2}(b-a).$$ \noindent{\bf 4.} $$f(z) = {z^{1/3}\over(z+a)(z+b)} = {e^{(1/3)\log z}\over(z+a)(z+b)}.$$ $$\int_\rho^R {r^{1/3}\over (r+a)(r+b)}dr + \int_{C_R} f(z)dz - \int_\rho^R {r^{1/3}e^{2i\pi/3}\over (r+a)(r+b)}dr + \int_{C_\rho} f(z)dz = 2\pi i(\Res_{z=-a}f(z) + \Res_{z=-b}f(z)).$$ These residues are at simple poles and are therefore $${a^{1/3}e^{\pi i/3}\over b-a}\qquad{\rm and}\qquad {b^{1/3}e^{\pi i/3}\over a-b},$$ respectively. $$\left|\int_{C_\rho} f(z)dz\right| \leq {\rho^{1/3}\over(a+\rho)(b+\rho)}2\pi\rho \to 0$$ $$\left|\int_{C_R} f(z)dz\right| \leq {R^{1/3}\over (R+a)(R+b)}2\pi R\to 0.$$ Therefore, rearranging the original equality, $$(1-e^{2i\pi/3})\int_0^\infty {r^{1/3}\over (r+a)(r+b)}dr = 2\pi ie^{\pi i/3}{a^{1/3}-b^{1/3}\over b-a}$$ $$\longrightarrow \int_0^\infty {x^{1/3}\over (x+a)(x+b)}dx = {2\pi\over\sqrt 3}\cdot{\root 3 \of a - \root 3 \of b\over b - a}$$ \hrule % page 287 \noindent{\bf 5.} $$\int_0^\pi {d\theta\over (a+\cos\theta)^2} = {1\over 2}\int_0^{2\pi} {d\theta\over (a+\cos\theta)^2},$$ by symmetry of the integrand, $$=\fr12\int_C {1\over (a+{z+z^{-1}\over 2})^2}{dz\over iz} = \fr2i\int_C {z\over (z^2+2az+1)^2}.$$ which has two singularities, those being $$z^2 + 2az + 1 = 0 \to z = \pm\sqrt{a^2 - 1} - a.$$ Only the more positive singularity $z_0$ is within $|z|<1,$ where $a > 1.$ The integrand can be rewritten as $${\phi(z)\over (z-z_0)^2}$$ where $\phi(z) = {z\over (z-z_1)^2},$ $z_1$ being the more negative singularity. The singularity has residue $$B_0 = \phi'(z_0) = {-z_1-z_0\over (z_0-z_1)^3} = {2a\over 8\sqrt{a^2-1}^3},$$ giving the integral value $$\int_0^\pi {d\theta\over (a+\cos\theta)^2} = 2\pi i\fr2i\cdot{2a\over 8\sqrt{a^2-1}^3} = {a\pi\over\sqrt{a^2-1}^3}.$$ \bye