\def\arg{\mathop{\rm arg}\nolimits} \let\rule\hrule \def\hrule{\goodbreak\medskip\rule\medskip\goodbreak} %page 317 \noindent{\bf 1.} $$w = {i-x\over i+x} = {(i-x)^2\over -1 - x^2} = -{-1 - 2ix + x^2 \over 1+x^2} = {1-x^2\over 1+x^2} + i{2x\over 1+x^2}.$$ $y=0,$ the boundary of the preimage in Figure 13 transforms into $$|w| = {\sqrt{(1-x^2)^2+4x^2}\over 1+x^2} = {\sqrt{1-2x^2+x^4+4x^2}\over 1+x^2} = 1.$$ \noindent{\bf 7.} Take $$\rho = \ln|Z|, \quad 0< \Theta = \arg(Z) \leq 2\pi.$$ $$w = \rho + i\Theta.$$ \hrule %page 330 \noindent{\bf 1.} With constant $y_1,$ $$u = x^2 - y_1^2, \quad v = 2xy_1.$$ $$u = (v/2y_1)^2 - y_1^2 \to 4y_1^2(u+y_1^2) = v^2,$$ assuming $y_1>0.$ \noindent{\bf 4.} $y=0$ gives $u = x_1^2, v = 0,$ and $v(y) = -v(-y), u(y) = u(-y),$ telling us that $x_1 = 1$ transforms into a complete parabolic region with form $v^2 = -4(u-1).$ $x=\pm y$ similarly gives $$u = x^2 - x^2, \quad v = \pm 2x^2 \to u = 0, \quad v\in {\bf R,}$$ which at the given boundary points has $A = 0 \mapsto A' = 0,$ $C = 1\mapsto C' = 1,$ $D = 1+i \mapsto D' = 2,$ and $B' = 1-i\mapsto -2,$ under the $w = z^2$ transformation. This completes the boundary of the region, which is interior to the boundary. \hrule %page 352 \noindent{\bf 1.} $${dw\over dz} = 2z = 2(2+i)$$ at $z_0 = 2+i,$ giving an angle of rotation $\arg 2+i = \tan^{-1}(1/2)$ and scale factor $|2(2+i)| = 2\sqrt{5}.$ This can be demonstrated with $y=1,$ passing through $z_0$ at angle $\theta = 0,$ transformed into $$(x+iy)^2 = (x+i)^2 = (t+2+i)^2 = t^2 + 2(1+i)t + 2,$$ which, since $x(0) = z_0,$ gives an angle equal to the argument of $2(1+i),$ which is $\pi/4.$ \noindent{\bf 4.} The transformation $w=z^n$ gives $${dw\over dz} = nz^{n-1},$$ meaning that $\rho_0\exp(i\theta_0)$ gives angle of rotation $\arg(n\rho_0^{n-1}\exp(i(n-1)\theta_0)) = (n-1)\theta_0$ and scale factor $|n\rho_0^{n-1}\exp(i(n-1)\theta_0)| = n\rho_0^{n-1}.$ \hrule %page 357 \noindent{\bf 1.} \noindent{\it (a)} $$u(x, y) = 2x - x^3 + 3xy^2.$$ This is harmonic because $$u_{xx} + u_{yy} = - 6x + 6x = 0$$ on all $x\in{\bf R}.$ $$v_y = u_x = 2 + 3y^2 \to v(x,y) = 2y + y^3 + g(x).$$ $$g'(x) = v_x = -u_y = -6xy = \to v(x,y) = 2y + y^3 - 3x^2y+C.$$ \noindent{\it (b)} $$u(x,y) = \sinh x \sin y$$ This is harmonic because $$u_{xx} + u_{yy} = \sinh x\sin y - \sinh x\sin y = 0.$$ $$v_y = u_x = \cosh x\sin y \to v(x,y) = -\cosh x\cos y + g(x).$$ $$g'(x) = v_x = -u_y = -\sinh x\cos y \to v(x,y) = -\cosh x\cos y - \cosh x\cos y + C = C - 2\cosh x\cos y.$$ \noindent{\it (c)} $$u(x,y) = {y\over x^2+y^2}$$ This is harmonic because $$u_{xx} + u_{yy} = 0.$$ $$v_y = u_x = {-2yx \over (x^2+y^2)^2} \to v = {x\over x^2+y^2} + g(x).$$ $$g'(x) = v_x = -u_y = -{x^2+y^2 - 2y^2\over (x^2+y^2)^2} \to g(x) = {x\over x^2+y^2} + C.$$ % also read sec 127-128, 129 (question unnecessary) \bye