\def\Re{\mathop{\rm Re}\nolimits} \def\Im{\mathop{\rm Im}\nolimits} \def\Log{\mathop{\rm Log}\nolimits} \let\rule\hrule \def\hrule{\medskip\rule\medskip} %page 95 \noindent{\bf 8.} $$\log z = i\pi/2 \to z = e^{i\pi/2} = i,$$ by Euler's formula. \hrule %page 99 \noindent{\bf 2.} \noindent{\it (a)} Where $z_n = r_ne^{i\theta_n},$ for all values of $\theta_n,$ $$\log\left({z_1\over z_2}\right) = \ln|z_1/z_2| + i\arg(z_1/z_2)$$$$ = (\ln(r_1) - \ln(r_2)) + i(\theta_1-\theta_2) = (\ln(r_1) + i\theta_1) - (\ln(r_2) + i\theta_2) = \log z_1 - \log z_2,$$ because $\ln(a-b) = \ln a - \ln b$ and $\arg(z_1/z_2) = \arg(z_1) - \arg(z_2).$ \noindent{\it (b)} $1/z = \overline z/|z|^2.$ $$\log(1/z) = \ln|1/z| + i\arg(1/z) = - \ln|z| - i\arg z = - (\ln|z| + i\arg z) = -\log(z),$$ so $$\log(z*(1/z)) = \log(z) + \log(1/z) = \log(z) - \log(z) = 0.$$ \hrule %page 103 \noindent{\bf 2.} \noindent{\it (a)} The principal value of $(-i)^i$ is $e^{i\Log(i)} = e^{i\pi/2}.$ \noindent{\it (b)} The base of this power function is $e^(1-2\pi/3) = b \to \Log(b) = 1-2\pi i/3.$ This gives a principal value of $e^{3\pi i(1-2\pi/3)} = e^{3\pi i - 2\pi^2} = -e^{2\pi^2}.$ \noindent{\it (c)} The principal value of $(1-i)^{4i}$ is $e^{\Log(1-i)4i} = e^{(4i)(\ln(2)/2 - \pi/4)} = e^{(2\ln(2)i)-\pi} = e^{-\pi}(\cos(2\ln(2)) + i\sin(2\ln(2))).$ \noindent{\bf 8.} \noindent{\it (a)} $$z^{c_1}z^{c_2} = e^{c_1\Log(z)}e^{c_2\Log(z)} = e^{\Log(z)(c_1+c_2)} = z^{c_1+c_2}.$$ \noindent{\it (b)} $${z^{c_1}\over z^{c_2}} = {e^{\Log(z)c_1}\over e^{\Log(z)c_2}} = e^{c_1\Log z - c_2\Log z} = e^{\Log(z)(c_1-c_2)}.$$ \noindent{\it (c)} $$(z^c)^n = (e^{c\Log z})^n = e^{nc\Log z} = z^{cn}.$$ \hrule %page 107 \noindent{\bf 3.} $$\sin(z+z_2) = \sin z \cos z_2 + \cos z \sin z_2 \to \cos(z+z_2) = \cos z \cos z_2 - \sin z \sin z_2 \to \cos(z_1+z_2) = \cos z_1\cos z_2-\sin z_1\sin z_2.$$ \noindent{\bf 7.} % need to do more here $\sin z = \sin x \cosh y + i\cos x \sinh y.$ $\cos z = \cos x \cosh y - i\sin x \sinh y.$ $$|\sin z|^2 = (\sin x\cosh y)^2 + (\cos x\sinh y)^2 = \sin^2 x(1+\sinh^2 y) + \cos^2 x\sinh^2 y = \sin^2 x + \sinh^2 y.$$ $$|\cos z|^2 = \cos^2 x \cosh^2 y + \sin^2 x \sinh^2 y = \cos^2 x \cosh^2 y + (1-\cos^2 x)\sinh^2 y = \sinh^2 y + \cos^2 x.$$ \noindent{\bf 12.} $\sin z$ and $\cos z$ are real with $z$ on the real axis. Therefore, $\overline{\sin z} = \sin\overline z$ and $\overline{\cos z} = \cos\overline z.$ \hrule %page 111 \noindent{\bf 6.} \noindent{\it (a)} $$|\cosh z|^2 = \sinh^2 x + \cos^2 y \to |\sinh x|^2 \leq |\cosh z|^2 \to |\sinh x|\leq |\cosh z|.$$ $$|\cosh z|^2 = \cosh^2 x + cos^2 y \to |\cosh z|^2 \leq \cosh^2 x \to |\cosh z| \leq \cosh x,$$ because $\cosh x > 0.$ \noindent{\it (b)} %9b of sec 38 would probably be good $$|\sinh y| \leq |\cos z| \leq \cosh y.$$ We change $z$ to $z' = zi,$ so $y$ becomes $x.$ $$|\sinh x| \leq |\cosh z| \leq \cosh x.$$ \noindent{\bf 16.} $$\sinh z = \sinh x \cos y + i\cosh x \sin y.$$ $$\cosh z = \cosh x \cos y + i\sinh x \sin y.$$ \noindent{\it (a)} $$\sinh z = i = \sinh x\cos y + i\cosh x\sin y \to 1 = \cosh x\sin y = \sin y,$$ because all zeroes of $\cosh x$ are on imaginary axis, so $x = 0 \to \cosh x = 1.$ $\sin y = 1$ on $y = 2n\pi + \pi/2 \to z = (2n\pi + \pi/2)i.$ \noindent{\it (b)} $$\cosh z = \cosh(yi) = 1/2 = \cos y \to y = (2n\pi \pm \pi/3)i.$$ \hrule %page 113 \noindent{\bf 1.} %learn the derivation of inverse sin \noindent{\it (c)} $$\cosh^{-1}(-1) = \log\left[-1+0^{1/2}\right] = \log(1) = 2n\pi i+\pi.$$ \hrule %page 119 \noindent{\bf 2.} \noindent{\it (a)} $\int_0^1 (1+it)^2 dt = \int_0^1 1 + 2it - t^2 dt = [t + it^2 - t^3/3]_0^1 = 1 + i - 1/3 = 2/3 + i.$ \noindent{\it (b)} $\int_1^2 \left({1\over t} -i\right)^2 dt = \int_1^2 {1\over t^2} - {2i\over t} - 1 dt = [-{1\over t} - 2i\ln t - t]_1^2 = 1-{1\over 2} - 2i\ln2 + 2 - 1 = 3/2 - 2i\ln2.$ \noindent{\it (c)} $\int_0^{\pi/6} e^{i2t} dt = \int_0^{\pi/6} \cos(2t) + i\sin(2t) dt = (1/2)[\sin(2t) - i\cos(2t)]_0^{\pi/6} (1/2)[\sqrt3/2 - i/2].$ \noindent{\it (d)} $\int_0^\infty e^{-zt} dt = \lim_n\to\infty [-e^{-zt}/z]_0^n = 1/z - \lim_t\to\infty e^{-zt}/z = 1/z.$ \hrule %page 123 \noindent{\bf 1.} %do no 2 to confirm knowledge of jordan curve \noindent{\it (a)} This is true for a real-valued function, so $$\int_{-b}^{-a} u(-t) dt + i\int_{-b}^{-a} v(-t) = \int_a^b u(t) dt + i \int_a^b v(t) dt,$$ because $u$ and $v$ are real-valued, so the corresponding imaginary and real components are equal. \noindent{\it (b)} This is true of a real function on $(a,b),$ so $$\int_a^b u(t) dt = \int_\alpha^\beta u(\phi(\tau))\phi'(\tau) d\tau,$$ and similarly for $v(t),$ so $$\int_a^b u(t)+iv(t) dt = \int_\alpha^\beta (u(\phi(\tau)) + iv(\phi(\tau))\phi'(\tau) d\tau.$$ \bye