\def\Re{\mathop{\rm Re}\nolimits} \def\Im{\mathop{\rm Im}\nolimits} \def\Log{\mathop{\rm Log}\nolimits} \let\rule\hrule \def\hrule{\medskip\rule\medskip} % page 132 \noindent{\bf 1.} \noindent{\it (a)} $$\int_0^\pi {2e^{i\theta}+2\over 2e^{i\theta}} 2ie^{i\theta} d\theta = \int_0^\pi i(2e^{i\theta} + 2) d\theta = \int_0^\pi 2ie^{i\theta} d\theta + \int_0^\pi 2i d\theta = 2(-1 - 1) + 2\pi i.$$ \noindent{\it (b)} $$\int_\pi^{2\pi} {2e^{i\theta} + 2\over 2e^{i\theta}} 2ie^{i\theta} d\theta = \int_\pi^{2\pi} i(2e^{i\theta} + 2) d\theta = \int_\pi^{2\pi} 2ie^{i\theta} d\theta + \int_\pi^{2\pi} 2 d\theta = 4 + 2\pi i. $$ \noindent{\it (c)} This is equivalent to the sum of integrals over $(0, \pi)$ and $(\pi, 2\pi).$ \noindent{\bf 4.} Parameterizing the curve as $x + ix^3,$ with $x\in (-1, 1),$ this integral can be taken as the two integrals (and the discontinuity ignored because the function is defined at either side of it), $$\int_{-1}^0 (1+3x^2) dx + \int_0^1 4x^3 (1+3x^2) dx = (1 + 1) + (1 + 2) = 5.$$ \hrule %page 138 \noindent{\bf 3.} The length of the triangle is $3+4+5 = 12,$ and the maximum value of $$e^z - \overline{z}$$ is $$|e^z - \overline{z}| \leq e^x + \sqrt{x^2 + y^2} \leq \max{e^z} + \max{\sqrt{x^2 + y^2}} \leq 1 + 4,$$ so by the theorem, the integral will be less that $ML = 12*5 = 60.$ \noindent{\bf 4.} The length of the top half of the circle will be $\pi R,$ and the maximum value of the integrand will be less than the quotient of the maximum value of the dividend and the minimum value of the divisor. $|2z^2 - 1|$ has a maximum value of $2R^2 + 1$ at $z = iR,$ and $$z^4 + 5z^2 + 4 = (z^2 + 1)(z^2 + 4)$$ has a minimum value of $(R^2 - 1)(R^2 - 4)$ (coincidentally at $z = iR,$ although this isn't necessary) The upper bound for this integral is, therefore, $ML,$ which corresponds to the given upper bound. Dividing the numerator and the denominator by $R^4$ gives $$\pi({1/R} + O(1/R^2)) \over 1 + O(1/R),$$ and because $1/R$ and $1/R^2$ both approach $0$ as $R$ approaches $\infty,$ we get $$\pi(1/R),$$ which also approaches $0.$ \bye