From 6ce1db1f867c545ebdb1afb705580514b356f883 Mon Sep 17 00:00:00 2001 From: Holden Rohrer Date: Wed, 5 Jan 2022 00:02:12 -0500 Subject: more math stuff --- .gitignore | 3 + li/Makefile | 19 ++ li/hw10.tex | 157 ++++++++++++++++ li/hw9.tex | 185 +++++++++++++++++++ li/matlab_hw.py | 512 ++++++++++++++++++++++++++++++++++++++++++--------- zhilova/final.tex | 179 ++++++++++++++++++ zhilova/midterm2.tex | 146 +++++++++++++++ 7 files changed, 1109 insertions(+), 92 deletions(-) create mode 100644 li/Makefile create mode 100644 li/hw10.tex create mode 100644 li/hw9.tex create mode 100644 zhilova/final.tex create mode 100644 zhilova/midterm2.tex diff --git a/.gitignore b/.gitignore index 48b55b0..dedd592 100644 --- a/.gitignore +++ b/.gitignore @@ -1,2 +1,5 @@ *.log *.pdf +*.ps +li/output.txt +li/insurance.csv diff --git a/li/Makefile b/li/Makefile new file mode 100644 index 0000000..76cbdb8 --- /dev/null +++ b/li/Makefile @@ -0,0 +1,19 @@ +.POSIX: + +final.pdf: matlab_hw.pdf output.pdf + pdftk matlab_hw.pdf output.pdf output final.pdf + +matlab_hw.pdf: matlab_hw.ps + ps2pdf matlab_hw.ps + +output.pdf: output.ps + ps2pdf output.ps + +matlab_hw.ps: matlab_hw.py + vim -R matlab_hw.py -c "hardcopy > matlab_hw.ps | q" + +output.ps: output.txt + vim -R output.txt -c "hardcopy > output.ps | q" + +output.txt: matlab_hw.py + python3 matlab_hw.py > output.txt diff --git a/li/hw10.tex b/li/hw10.tex new file mode 100644 index 0000000..2b372de --- /dev/null +++ b/li/hw10.tex @@ -0,0 +1,157 @@ +\def\bmatrix#1{\left[\matrix{#1}\right]} +\def\dmatrix#1{\left|\matrix{#1}\right|} +\def\fr#1#2{{#1\over #2}} + + {\bf Section 6.1} + +\noindent{\bf 5.} + +$$A = \bmatrix{1&b\cr b&9}.$$ + +{\it (a)} +$a_{11} = 1 > 0,$ +and $\det A = 9 - b^2 > 0$ when $-3 < b < 3.$ + +{\it (b)} + +$$A = \bmatrix{1&0\cr b&1}\bmatrix{1&b\cr 0&9-b^2} + = \bmatrix{1&0\cr b&1}\bmatrix{1&0\cr 0&9-b^2}\bmatrix{1&b\cr 0&1} +$$ + +{\it (c)} + +$(x-v)^TA(x-v) + c = x^TAx - 2x^TAv + v^TAv + c$ lets us generate +arbitrary first and zeroth order terms while retaining the same +second-order terms ($v^TAx = x^TAv$ by symmetry) since $x^TAx$ are the +only second order terms. + +$$\fr12(x^2+2bxy+9y^2)-y = \fr12(x^TAx - 2x^TAv + v^TAv + c) \Rightarrow +y = x^TAv - v^TAv - c \Rightarrow +y = x^TAv, c = -v^TAv.$$ + +$$y = x^TAv \Rightarrow \bmatrix{0\cr1} = Av \Rightarrow +v = \bmatrix{-b/(9-b^2)\cr 1/(9-b^2)},$$ +by row reduction. + +The minimum is +$$\fr12c = -\fr12v^TAv = -\fr12v^T\bmatrix{0\cr1} = \fr1{2(b^2-9)},$$ +when $A$ is positive definite ($|b| < 3$). + +{\it (d)} + +There is no minimum if $b=3$ because $x^2+2bxy+9y^2 = x^2+6xy+9y^2 = +(x+3y)^2$ is zero where $y = -x/3,$ giving nonzero values of $y$ with a +zero quadratic component and therefore arbitrarily small values of +$\fr12(x^2+2bxy+9y^2) - y.$ + + {\bf Section 6.2} + +\noindent{\bf 4.} + +Since $A$ is positive definite, $A$ has eigenvalue $\lambda > 0$ and +eigenvector $v,$ $A^2v = \lambda^2v,$ giving that $A^2$ has eigenvalue +$\lambda^2 > 0$ and no others (because the complete set of eigenvectors, +from symmetry of $A^2,$ span $R^n.$) + +Similarly, $A^{-1}$ is symmetric ($(A^{-1}A)^T = I \to (A^{-1})^TA = I +\to (A^{-1})^T = A^{-1}$), so its eigenvectors will span the codomain, +and $Av = \lambda v \to A^{-1}Av = A^{-1}\lambda v \to (1/\lambda)v = +A^{-1}v,$ and $\lambda > 0 \to 1/\lambda > 0,$ so it is also +positive-definite. + +\noindent{\bf 24.} + +Letting $s=0$ gives us a set of eigenvalues with minimum +$\lambda_{\rm min},$ and the set of eigenvalues for arbitrary $s$ has +minimum $\lambda_{\rm min}+s > 0 \to s > -\lambda_{\rm min}.$ +$$ +\bmatrix{0&-4&-4\cr -4&0&-4\cr -4&-4&0} \to \lambda = 4,-8 \to s > 8.$$ +$$ +\bmatrix{0&3&0\cr 3&0&4\cr 0&4&0} \to \lambda = -4,0,4 \to s > 4.$$ + +\noindent{\bf 27.} + +$$A = CC^T = \bmatrix{3&0\cr1&2}\bmatrix{3&1\cr0&2} = \bmatrix{10&3\cr +3&5}.$$ + +$$A = \bmatrix{4&8\cr8&25} = \bmatrix{2&0\cr 4&3}\bmatrix{2&4\cr 0&3}.$$ +(This was found by inspection after a first-order approximation, with +$U = \bmatrix{4&8\cr0&9},$ (in the LU decomposition) giving $\sqrt D = +\bmatrix{2&0\cr0&3}$) + +\noindent{\bf 31.} + +For $A,$ it has eigenvalue $3$ corresponding to $(1,-1,0)^T$ and +$(1,1,-2)^T.$ +$$x^TAx = 3/2(x-y)^2+1/2(x+y-2z)^2.$$ + +$$x^TBx = x^T\bmatrix{x+y+z\cr x+y+z\cr x+y+z} = (x+y+z)^2.$$ + +\goodbreak + {\bf Section 6.3} + +\noindent{\bf 12.} + +{\it (a)} + +If $A' = 4A,$ $\Sigma' = 4\Sigma,$ because $(A')^TA' = 4A^T\cdot4A = +16A^TA,$ meaning the diagonal of $\Sigma'$ will have values $4$ times +$\Sigma.$ + +{\it (b)} + +The SVD of $A^T$ is $V\Sigma U^T,$ by $(AB)^T = B^TA^T,$ and that +$\Sigma$ is symmetric (and $V$ and $U$ still satisfy orthogonality +because orthogonality is preserved for square matrices across a +transpose). +The SVD of $A^{-1} = A^+$ is $V\Sigma^{-1} U^T,$ because the +pseudoinverse is the complete inverse for an invertible matrix. + +\noindent{\bf 15.} + +$$A = \bmatrix{1&1&1&1} = \bmatrix{1}\bmatrix{2&0&0&0} + \bmatrix{1/2&1/2&1/2&1/2\cr + -1/\sqrt2&1/\sqrt2&0&0\cr + -1/\sqrt2&0&1/\sqrt2&0\cr + -1/\sqrt2&0&0&1/\sqrt2\cr}$$ + +$$A^+ = \bmatrix{1/2&-1/\sqrt2&-1/\sqrt2&-1/\sqrt2\cr + 1/2&1/\sqrt2&0&0\cr + 1/2&0&1/\sqrt2&0\cr + 1/2&0&0&1/\sqrt2\cr}\bmatrix{1/2\cr 0\cr 0\cr 0} + \bmatrix{1} + = \bmatrix{1/4\cr1/4\cr1/4\cr1/4}. +$$ + +$$B = \bmatrix{0&1&0\cr 1&0&0} = \bmatrix{1&0\cr0&1}\bmatrix{1&0&0\cr0&1&0} + \bmatrix{0&1&0\cr1&0&0\cr0&0&1} +$$ + +$$B^+ = \bmatrix{0&1&0\cr 1&0&0\cr 0&0&1}\bmatrix{1&0\cr0&1\cr0&0} + \bmatrix{1&0\cr0&1} += \bmatrix{0&1\cr1&0\cr0&0}$$ + +$$C = \bmatrix{1&1\cr 0&0} = +\bmatrix{1&0\cr0&1}\bmatrix{\sqrt2&0\cr0&0}\bmatrix{1/\sqrt2&1/\sqrt2\cr1/\sqrt2&-1/\sqrt2}$$ + +$$C^+ = +\bmatrix{1/\sqrt2&1/\sqrt2\cr1/\sqrt2&-1/\sqrt2}\bmatrix{1/\sqrt2&0\cr0&0} +\bmatrix{1&0\cr0&1} = +\bmatrix{1/2&1/2\cr0&0}$$ + +\noindent{\bf 18.} + +With $r_i$ as the $i$th row of $A,$ $A,$ $\hat x = c_1r_1 + c_3r_3.$ + +$$A^TA\hat x = A^Tb = +A^T\bmatrix{1&0&0\cr1&0&0\cr1&1&1}(c_1\bmatrix{1\cr0\cr0} + +c_3\bmatrix{1\cr1\cr1}) = +\bmatrix{1&1&1\cr0&0&1\cr0&0&1}(c_1\bmatrix{1\cr1\cr1} + +c_3\bmatrix{1\cr1\cr3}) = $$$$ +c_1\bmatrix{3\cr1\cr1} + c_3\bmatrix{5\cr3\cr3} += \bmatrix{1&1&1\cr0&0&1\cr0&0&1}\bmatrix{0\cr2\cr2} = +\bmatrix{4\cr2\cr2} = (1/2)\bmatrix{3\cr1\cr1} + +(1/2)\bmatrix{5\cr3\cr3} \to \hat x = \bmatrix{1\cr1/2\cr1/2} +$$ + +\bye diff --git a/li/hw9.tex b/li/hw9.tex new file mode 100644 index 0000000..ee99439 --- /dev/null +++ b/li/hw9.tex @@ -0,0 +1,185 @@ +\def\bmatrix#1{\left[\matrix{#1}\right]} +\def\dmatrix#1{\left|\matrix{#1}\right|} +\def\fr#1#2{{#1\over #2}} + + {\bf Section 5.4} + +\noindent{\bf 8.} + +$${dr\over dt} = 4r-2w.$$ +$${dw\over dt} = r+w.$$ +$${du\over dt} = \bmatrix{4&-2\cr1&1}u.$$ + +The system has eigenvalues $\lambda = 2, 3,$ with eigenvectors +$(1, 1)^T$ and $(2, 1)^T,$ + +{\it (a)} This system is unstable because all eigenvalues are greater +than zero. + +{\it (b)} $$\bmatrix{300\cr 200} = 100\bmatrix{1\cr 1} + +100\bmatrix{2\cr 1},$$ +giving +$$u = \bmatrix{1&2\cr 1&1}\bmatrix{e^{2t}&0\cr 0&e^{3t}}\bmatrix{100\cr100} = +\bmatrix{100e^{2t} + 200e^{3t}\cr 100e^{2t} + 100e^{3t}}.$$ + +{\it (c)} + +The dominant growth is $e^{3t},$ so the ratio will eventually be +2 to 1. + +\noindent{\bf 24.} + +$v+w$ is constant if $${d\over dt}(v+w) = {dv\over dt} + {dw\over dt} = +w-v + v-w = 0.$$ + +$${du\over dt} = \bmatrix{-1&1\cr1&-1}u,$$ +with eigenvalues $-2$ and $0$ and corresponding eigenvectors $(1, -1)^T$ +and $(1, 1)^T$ respectively. This gives a particular solution (with +$v(0) = 30$ and $w(0) = 10$) +$$u = \bmatrix{-1&1\cr1&-1}\bmatrix{20\cr10e^{-2t}} = \bmatrix{-1\cr +1}20 + \bmatrix{1\cr -1}10e^{-2t}$$ + +\noindent{\bf 42.} + +The reason this (falsely) appears to work is because the right side of +the matrix is still multiplying from +$$u = \bmatrix{x\cr y},$$ while the left side is supposed to be +$${du\over dt} = \bmatrix{dy/dt\cr dx/dt}.$$ +In order to make this correct, there should also be a column exchange +(changing $u$ to represent $(y, x)^T,$) +giving +$$\bmatrix{2&-2\cr-4&0},$$ +which is unstable. + + {\bf Section 5.5} + +\noindent{\bf 11.} + +$$P = 0\bmatrix{1/2\cr -1/2}\bmatrix{1/2&-1/2} + + 1\bmatrix{1/2\cr 1/2}\bmatrix{1/2&1/2}.$$ + +$$Q = 1\bmatrix{1/2\cr -1/2}\bmatrix{1/2&-1/2} + -1\bmatrix{1/2\cr 1/2}\bmatrix{1/2&1/2}.$$ + +$$R = 5\bmatrix{2/\sqrt5\cr 1/\sqrt5}\bmatrix{2/\sqrt5&1/\sqrt5} + -5\bmatrix{1/\sqrt5\cr -2/\sqrt5}\bmatrix{1/\sqrt5&-2/\sqrt5}.$$ + +\noindent{\bf 13.} + +{\it (a)} + +The eigenvectors $u,$ $v,$ and $w$ are pairwise orthogonal because $A$ +is symmetric. + +{\it (b)} +The null space is $\mathop{\rm sp}(u)$ because it's, by definition, in +$\mathop{\rm null}(A-0I),$ and the column space is $\mathop{\rm +sp}(v,w),$ because an eigenvalue's multiple must be a valid output of +the matrix. +The left null space is also $\mathop{\rm sp}(u)$ by +orthogonality to the column space, and the row space is $\mathop{\rm +sp}(v,w)$ by orthogonality to the null space. + +{\it (c)} + +No. $x+u$ also satisfies. $A(x+u) = Ax + Au = v + w + 0.$ + +{\it (d)} + +If $b\in\mathop{\rm sp}(v,w),$ this equation has a solution, by +definition of the column space. + +{\it (e)} + +$S^TS = I,$ because all the vectors are orthogonal, and normal/unit, so +the dot product with eachother is zero and the dot product with +themselves is one. Thus, $S^{-1} = S^T.$ + +$$S^{-1}AS = \Lambda,$$ +where $\Lambda$ is the diagonal matrix of eigenvalues +$$\bmatrix{0&0&0\cr 0&1&0\cr 0&0&2}.$$ + +\noindent{\bf 14.} + +$A$ is orthogonal (all columns have norm one and are orthogonal to each +other), permutation (all rows and columns have exactly one non-zero +entry which is a one) and therefore invertible, diagonalizable (on the +complex numbers), and Markov. +By row reducing $A-\lambda I,$ we get +$$\bmatrix{-\lambda&1&0&0\cr + 0&-\lambda&1&0\cr + 0&0&-\lambda&1\cr + 0&0&0&-\lambda+\lambda^{-3}},$$ +which has determinant equal to product of the diagonal, or +characteristic polynomial +$$\lambda^4 - 1 = 0,$$ +giving $A$ eigenvalues of the fourth roots of unity, $\{1,-1,i,-i\}.$ + +$B$ is a projection (because $B^2 = B,$ and symmetric), Hermitian (by +symmetric), rank-1 (because all columns are identical), diagonalizable +(by symmetric), and Markov (all columns sum to one). +Rank-1/singular excludes orthogonal and invertible. +$B$ has eigenvalues $0$ and $1.$ + + {\bf Section 5.6} + +\noindent{\bf 30.} + +$M$ is the matrix which transforms the eigenvectors of $A$ to the +corresponding eigenvectors (based on eigenvalues) of $B.$ + +{\it (a)} +$$M = M^{-1} = \bmatrix{0&1\cr1&0}.$$ +$$B = M^{-1}AM = +\bmatrix{0&1\cr1&0}\bmatrix{0&1\cr0&1}\bmatrix{0&1\cr1&0} = +\bmatrix{1&0\cr1&0}\bmatrix{0&1\cr1&0} = \bmatrix{0&1\cr0&1}.$$ + +{\it (b)} + +$$M = M^{-1} = \bmatrix{1&0\cr0&-1}.$$ +$$B = M^{-1}AM = +\bmatrix{1&0\cr0&-1}\bmatrix{1&1\cr1&1}\bmatrix{1&0\cr0&-1} = +\bmatrix{1&0\cr0&-1}\bmatrix{1&-1\cr1&-1} = +\bmatrix{1&-1\cr-1&1}.$$ + +{\it (c)} + +$$A = \bmatrix{1&2\cr3&4}$$ +has eigenvalues $\lambda^2 - 5l - 2 = 0 \to \lambda = 5/2\pm +\sqrt{33}/2,$ +corresponding to eigenvectors $(\fr16(-3+\sqrt33), 1)^T$ and +$(\fr16(-3-\sqrt33),1)^T$ in decreasing order. +$$B = \bmatrix{4&3\cr2&1},$$ +with the same eigenvalues but corresponding eigenvectors (also in +decreasing order of eigenvalue) +$(\fr14(3+\sqrt33),1)$ and +$(\fr14(3-\sqrt33),1).$ + +This corresponds to +$$M = \bmatrix{3/2&3/2\cr0&1}.$$ +For this $M,$ $B = M^{-1}AM.$ + +\noindent{\bf 32.} + +There is the zero family (with one matrix), the family with all ones +(with one matrix), the permutation matrix $\bmatrix{0&1\cr1&0}$ (with +a family of one), and the identity matrix (with one in its family). + +Then, there are the families with two members: those with one nonzero +entry on the antidiagonal, like +$$\bmatrix{0&1\cr0&0},$$ +those with a full diagonal and one entry on the antidiagonal, like +$$\bmatrix{1&1\cr0&1},$$ +and those with a full antidiagonal and one entry on the diagonal, like +$$\bmatrix{1&1\cr1&0}.$$ + +Then, there is the largest family, with six members, consisting of one +entry on the diagonal and zero or one entry on the antidiagonal, like +$$\bmatrix{1&1\cr0&0}.$$ + +I found these distinct families with the number of possible +characteristic polynomials, based on trace having a value $0,1,2$ and +determinant having a value $-1,0,1,$ and then splitting up repeated +eigenvalue matrices based on the number of distinct eigenvalues. + +\bye diff --git a/li/matlab_hw.py b/li/matlab_hw.py index 3473934..cf20709 100644 --- a/li/matlab_hw.py +++ b/li/matlab_hw.py @@ -1,12 +1,22 @@ import numpy as np +from time import perf_counter import scipy.linalg +import pandas as pd +import sympy + +timer_problems = True +regression_problems = True +np.set_printoptions(precision=3, suppress=True) +# if you want to run the regression problems, you need this dataset: +# `insurance.csv` in the current directory from +# https://www.kaggle.com/mirichoi0218/insurance/version/1 -print("Section 1.3: #30") +print("\nSection 1.3: #30") coeff = ( - [[ 1, 1, 1 ], - [ 1, 2, 2 ], - [ 2, 3, -4]] + ( 1, 1, 1 ), + ( 1, 2, 2 ), + ( 2, 3, -4) ) print( np.linalg.solve( @@ -20,7 +30,7 @@ np.linalg.solve( [7, 10, 3]) ) -print("Section 1.3: #32") +print("\nSection 1.3: #32") dimension = 3 tot = [0]*3 @@ -31,7 +41,7 @@ for x in range(ct): tot[i] += U[i][i] print([x/ct for x in tot]); -print("Section 1.4: #21") +print("\nSection 1.4: #21") A = [[.5, .5], [.5, .5]] B = [[1, 0], [0, -1]] @@ -52,20 +62,66 @@ print("C^3") print(np.linalg.matrix_power(C, 3)) print("C^k = 0") -print("Section 1.4: #59") +print("\nSection 1.4: #59") + +v = [3,4,5] +A = np.identity(3) +print(f"A * v = {np.matmul(A, v)}") +print(f"v' * v = {np.dot(v,v)}") +print(f"v * A = {np.matmul(v, A)}") + +print("\nSection 1.4: #60") + +print(f"Av = {np.matmul(np.ones((4,4)), np.ones((4,1)))}") +print(f"Bw = {np.matmul(np.identity(4)+np.ones((4,4)), np.zeros((4,1))+2*np.ones((4,1)))}") + +print("\nSection 1.6: #12") + +tridiag_mask = np.identity(11); +i,j = np.indices(tridiag_mask.shape) +tridiag_mask[i==j+1] = 1 +tridiag_mask[i==j-1] = 1 +tridiag_preserved = True +triangle_preserved = True +sym_preserved = True + +for x in range(1000): + a = np.random.rand(11,11) + inv = np.linalg.inv(a*tridiag_mask) + if (inv != inv*tridiag_mask).any(): + tridiag_preserved = False + + triu = np.triu(a) + inv = np.linalg.inv(triu) + if (inv != np.triu(inv)).any() and (inv != np.tril(inv)).any(): + triangle_preserved = False + + sym = np.transpose(triu) + triu - triu*np.identity(11) + if (sym != np.transpose(sym)).any(): + sym_preserved = False -print("A * v = [3, 4, 5]") -print("v' * v = 50") -print(f"v * A = {np.matmul([3,4,5], np.identity(3))}") +if triangle_preserved: + print("Triangular matrices' inverses are triangular.") +else: + print("Triangular matrices' inverses are not triangular.") -print("Section 1.4: #60") +if sym_preserved: + print("Symetric matrices' inverses are symmetric.") +else: + print("Symmetric matrices' inverses are not symmertic.") -print("Av = [4. 4. 4. 4.]") -print("Bw = [10. 10. 10. 10.]") +if tridiag_preserved: + print("Tridiagonal matrices' inverses are tridiagonal.") +else: + print("Tridiagonal matrices' inverses are not tridiagonal.") -print("Section 1.6: #12") +print("Entries being integers isn't preserved. This is trivially shown" +" the 1x1 [ 2. ] matrix's inverse [ 1/2. ]") +print("Entries being fractions (rationals) is preserved because the" +" matrix augmented with an identity and then reduced only requires" +" rational multiplications.") -print("Section 1.6: #32") +print("\nSection 1.6: #32") print("the inverse of the first matrix is") print(np.linalg.inv(5*np.identity(4) - np.ones((4,4)))) @@ -75,9 +131,9 @@ print(np.matmul(np.ones((4,4)),np.ones((4,4)))) print("so we can solve this like the following equation: (a*eye +\n\ b*ones)(c*eye + d*ones) = ac*eye + (ad+bc+dimension*bd)*ones = eye") print("c = 1/a. d = -b/a/(a+dimension*b), giving for the next matrix") -print("a = 1/6, d = 6/(1/6+5*-1)") # WRONG +print("a = 1/6, d = 6/(1/6+5*-1)") # WRONG (TODO?) -print("Section 1.6: #47") +print("\nSection 1.6: #47") print("I'm not sure. This is Python. It says (in either case):") print("numpy.linalg.LinAlgError: Singular matrix") @@ -86,54 +142,49 @@ print(np.linalg.solve(np.ones((4, 4)), np.random.rand(4, 1))) print(np.linalg.solve(np.ones((4, 4)), np.ones((4, 1)))) ''' -''' #68 -dimension = 500 -northwest = np.random.rand(dimension, dimension) -for x in range(0, dimension): - for y in range(x+1, dimension): - northwest[y][x] = 0 -print(northwest) -''' -print("Section 1.6: #69") - - -from time import perf_counter -matrix = np.random.rand(500, 500) -start = perf_counter() -np.linalg.inv(matrix) -first_time = perf_counter() - start -print("500x500 inverse:", str(first_time) + "s") -matrix = np.random.rand(1000, 1000) -start = perf_counter() -np.linalg.inv(matrix) -second_time = perf_counter() - start -print("1000x1000 inverse:", str(second_time) + "s") -print("factor:", second_time / first_time) - -print("Section 1.6: #70") - -dimension = 1000 -I = np.identity(dimension) -A = np.random.rand(dimension, dimension) -U = np.random.rand(dimension, dimension) -for x in range(0, dimension): - for y in range(x+1, dimension): - U[y][x] = 0 - -start = perf_counter() -np.linalg.inv(U) -print("inverse of U:", str(perf_counter() - start) + "s") -start = perf_counter() -np.linalg.solve(U, I) -print("U\I:", str(perf_counter() - start) + "s") -start = perf_counter() -np.linalg.inv(A) -print("inverse of A:", str(perf_counter() - start) + "s") -start = perf_counter() -np.linalg.solve(A, I) -print("A\I:", str(perf_counter() - start) + "s") - -print("Section 1.6: #71") +if timer_problems: + print("\nSection 1.6: #69") + + matrix = np.random.rand(500, 500) + start = perf_counter() + np.linalg.inv(matrix) + first_time = perf_counter() - start + print("500x500 inverse:", str(first_time) + "s") + matrix = np.random.rand(1000, 1000) + start = perf_counter() + np.linalg.inv(matrix) + second_time = perf_counter() - start + print("1000x1000 inverse:", str(second_time) + "s") + print("factor:", second_time / first_time) + print("This matches theory. We also expect that almost every random" + " matrix is invertible") + + print("\nSection 1.6: #70") + + dimension = 1000 + I = np.identity(dimension) + A = np.random.rand(dimension, dimension) + U = np.random.rand(dimension, dimension) + for x in range(0, dimension): + for y in range(x+1, dimension): + U[y][x] = 0 + + start = perf_counter() + np.linalg.inv(U) + print("inverse of U:", str(perf_counter() - start) + "s") + start = perf_counter() + np.linalg.solve(U, I) + print("U\I:", str(perf_counter() - start) + "s") + start = perf_counter() + np.linalg.inv(A) + print("inverse of A:", str(perf_counter() - start) + "s") + start = perf_counter() + np.linalg.solve(A, I) + print("A\I:", str(perf_counter() - start) + "s") + + print("There is no significant performance deviation in Python.") + +print("\nSection 1.6: #71") def proof(dim): L = np.identity(dim) - np.diag([x/(1+x) for x in range(1,dim)], -1) @@ -141,19 +192,17 @@ def proof(dim): Linv = np.linalg.inv(L) print("L^{-1}:") print(Linv) - right = True for j in range(1,dim+1): for i in range(1,j+1): if not np.isclose(Linv[j-1][i-1], i/j): print("the assertion in the book is wrong at",i,j) - right = False - if right: - print("The book is right") + return + print("The book is right") proof(4) proof(5) -print("Section 2.2: #33") +print("\nSection 2.2: #33") print("For the first matrix:") A = [[1, 3, 3], [2, 6, 9], [-1, -3, 3]] @@ -170,17 +219,36 @@ print(scipy.linalg.null_space(A)) print("particular solution:") print(np.linalg.lstsq(A, b, rcond=None)[0]) -print("Section 2.2: #35") -print("TODO") +print("\nSection 2.2: #35") +# b is, trivially, in the column space. + +def restrictions(A): + p,l,u = scipy.linalg.lu(A) + # PLU = A \to col(A) = col(PL) because U is full rank + # PLx = b + order = np.arange(len(A)) # [0,1,2,3] + for col in reversed(np.transpose(p@l)): + print(' + '.join( + str(col[int(pos)]) + '*x_' + str(int(pos)) + for pos in order + if not np.isclose(col[int(pos)], 0) + ) + + ' = 0.') + print("For the first system:") A = [[1, 2], [2, 4], [2, 5], [3, 9]] +restrictions(A) -print("Section 2.2: #36") +print("For the second system:") +A = [[1,2,3], [2,4,6], [2,5,7], [3,9,12]] +restrictions(A) + +print("\nSection 2.2: #36") print("(a)") A = np.array([[1, 2, 1], [2, 6, 3], [0, 2, 5]]) print("Basis of the column space:") -print(scipy.linalg.orth(A)) +print(np.linalg.matrix_rank(A)) print("Multiplying the rows by this gives zero (for this matrix, \ equivalent to [0 0 0]^T)") print(scipy.linalg.null_space(A.transpose())) @@ -188,12 +256,12 @@ print(scipy.linalg.null_space(A.transpose())) print("(b)") A = np.array([[1, 1, 1], [1, 2, 4], [2, 4, 8]]) print("Basis of the column space:") -print(scipy.linalg.orth(A)) +print(scipy.linalg.orth(A)) # ugh this ain't right print("Multiplying the rows by this gives zero (for this matrix, \ equivalent to [0 2 -1]^T)") print(scipy.linalg.null_space(A.transpose())) -print("Section 2.3: #2") +print("\nSection 2.3: #2") print("Largest possible number of independent vectors is the dimension \ of the space spanned by these vectors, or the number of vectors in the \ @@ -202,9 +270,9 @@ v = [[ 1, 1, 1, 0, 0, 0], [-1, 0, 0, 1, 1, 0], [ 0, -1, 0, -1, 0, 1], [ 0, 0, -1, 0, -1, -1]] -print(len(scipy.linalg.orth(v))) +print(np.linalg.matrix_rank(v)) -print("Section 2.3: #5") +print("\nSection 2.3: #5") print("(a)") @@ -222,17 +290,277 @@ v = [[ 1, 2, -3], if len(scipy.linalg.orth(v)) == 3: print("they are independent") else: print("they are not independent") -print("Section 2.3: #13") -# probably out of spirit of the matlab hw -print("This one can be done easily without a calculator because the \ - echelon matrix has already been computed.") -print("The dimensions of all of these is 2, and the row spaces are the \ - same.") - -print("Section 2.3: #16") -print("TODO") - -print("Section 2.3: #18") -print("TODO") - -print("Section 2.3: #24") +print("\nSection 2.3: #13") +print("U is the echelon martix of A, and for any matrix and its echelon" +" form, the dimensions of these spacees are the same, and the row" +" spaces are equal.") + +A = [[1,1,0], [1,3,1], [3,1,-1]] +U = [[1,1,0], [0,2,1], [0,0,0]] +print(f"(a) dim col A = {np.linalg.matrix_rank(A)}") +print(f"(b) dim row A = {np.linalg.matrix_rank(A)}") +print(f"(c) dim col U = {np.linalg.matrix_rank(U)}") +print(f"(d) dim row U = {np.linalg.matrix_rank(U)}") +stack = np.vstack((A, U)) +print("Since the row spaces are the same, the dimension of the space" +" both their rows span should be 2, like the dimension of each matrix's" +f" own row space. The dimension is {np.linalg.matrix_rank(stack)}.") + +print("\nSection 2.3: #16") +v = np.transpose([[1,1,0,0], [1,0,1,0], [0,0,1,1], [0,1,0,1]]) +rank = np.linalg.matrix_rank(v) +if rank == v.shape[0] and rank == v.shape[1]: + print("The matrix is full rank, so the rows are linearly " + "independent.") +# Finding the generic solution to Ax = 0 on a computer can also be +# written as scipy.linalg.null_space +if len(scipy.linalg.null_space(v)) == 0: + print("The matrix only has the trivial solution, so its columns are" + " linearly independent, by definition.") + +print("\nSection 2.3: #18") +w = np.transpose([[1,1,0], [2,2,1], [0,0,2]]) +b = [3,4,5] +lstsq = np.linalg.lstsq(w, b, rcond=None)[0] +print("We get least squares solution:") +print(lstsq) +print("Multiplying back out:") +mul = np.matmul(w, lstsq) +print(mul) +if np.allclose(mul, b): + print("which is b, so there is a solution.") +else: + print("which isn't b, so there isn't a solution.") + +w = [[1,2,0], [2,5,0], [0,0,2], [0,0,0]] +rank = np.linalg.matrix_rank(w) +if rank == 3: + print("The vectors span R^3, so a solution exists for all b.") +else: + print("The vectors don't span R^3, so some b don't have a solution") + +print("\nSection 2.3: #24") +v = [1,-2,3] # vT x = 0 + +print("Basis for the solution set:") +print(scipy.linalg.null_space([v])) + +print("Intersection with the xy plane:") # xy plane -> z = 0 +u = [0,0,1] # uT x = 0 +print(scipy.linalg.null_space([v,u])) + +print(f"Basis of V-perp: {v}") + +if regression_problems: + df = pd.read_csv('insurance.csv') + df['smoker'] = df['smoker'].replace({'yes': 1, 'no': 0}) + df['sex'] = df['sex'].replace({'female': 1, 'male': 0}) + regions = df['region'].unique() + for region in df['region'].unique(): + df[region] = df.region.apply(lambda r: r == region) + del df['region'] + + vals = df.to_numpy() + # Index(['age', 'sex', 'bmi', 'children', 'smoker', 'charges', 'southwest', 'southeast', 'northwest', 'northeast'], + A = [(1, row[0], 1.1**row[0], row[1], row[2], row[3], row[4], + row[6], row[7], row[8], row[9]) for row in vals] + # exponential and linear model of age, and linear models of + # everything else + b = [row[5] for row in vals] + x, e, rank, s = np.linalg.lstsq(A, b, rcond=None) + print(f"With error {rank},\n" + f"charges = {x[0]} + {x[1]}*age + {x[2]}*1.1^age + {x[3]}*female + " + f"{x[4]}*bmi + {x[5]}*children + {x[6]}*smoker + " + f"{x[7]}*southwest + {x[8]}*southeast + {x[9]}*northwest + " + f"{x[10]}*northeast") + + print("Expected charges for a 45-year-old woman in the northeast " + "who doesn't smoke and has no children at BMI of 27 is " + f"{x[0] + x[1]*45 + x[2]*1.1**45 + x[3] + x[4]*27 + x[10]}") + + +print("\nSection 3.3: #32") +b = (0,8,8,20) +t = np.array((0,1,3,4)) +# mostly given by np linalg lstsq +A = np.transpose((t, np.ones(t.shape))) +x, e, rank, s = np.linalg.lstsq(A, b, rcond=None) +hatb = np.matmul(A,x) +print(f"b = {x[0]}t + {x[1]}") +print(f"Approximations {hatb} have error {hatb-b} with min. error " + f"E^2 = {e}") + +print("\nSection 3.3: #33") +p = (1,5,13,17) +for arow, brow in zip(A, b): + print(f"{arow[0]}t + {arow[1]}t = {brow}") +x, e, rank, s = np.linalg.lstsq(A, p, rcond=None) +print(f"We get exact solution p = {x[0]}t + {x[1]} with error {e}.") + +print("\nSection 3.3: #34") +e = np.array(b) - np.array(p) +print(f"A^Te = {np.matmul(np.transpose(A), e)}, so e " + "is orthogonal to every column of A.") +print(f"The error ||e|| is {np.sqrt(np.dot(e,e))}.") + +print("\nSection 3.3: #35") +def buildcoeff(coeff): + return ' + '.join(f"{c}*x_{i}" for i,c in enumerate(coeff)) + +A = np.transpose((t*t, t, np.ones(t.shape))) +eq = np.matmul( np.transpose(A), b ) +for coeff, of in zip(np.matmul(np.transpose(A), A), eq): + print(f"{buildcoeff(coeff)} = {of}") + +print("\nSection 3.3: #36") +A = np.transpose((t*t*t, t*t, t, np.ones(t.shape))) +x, e, rank, s = np.linalg.lstsq(A, b, rcond=None) +p = np.matmul(A,x) +print(f"p = b = {p}") +print(f"e = p-b = 0 = {p-b}") + +print("\nSection 3.3: #37") +st = sum(t)/len(t) +sb = sum(b)/len(b) +A = np.transpose((t, np.ones(t.shape))) +x, e, rank, s = np.linalg.lstsq(A, b, rcond=None) +print(f"hat b = {sb} = {np.dot((st, 1), x)} = C(hat t) + D") + +print("This is true because the first equation in A^TAp = A^Tb is " +"(1,1,1,1)Ap = (1,1,1,1)b, so (1,1,1,1)Ap = (1,1,1,1) (Ct + D) = C(hat " +"t) + D") + +print("\nSection 5.2: #29") +A = ((.6, .4), (.4, .6)) +Aw,Av = np.linalg.eig(A) +if all(l < 1 for l in Aw): + print("A^k converges.") +else: + print("B^k doesn't converge to zero") +B = ((.6, .9), (.1, .6)) +Bw,Bv = np.linalg.eig(B) +if all(l < 1 for l in Bw): + print("B^k converges.") +else: + print("B^k doesn't converge to zero.") + +print("\nSection 5.2: #30") +if any(l > 1 for l in Aw): + print("A^k diverges") +else: + l = [0 if l < 1 else 1 for l in Aw] #Lambda has diagonal = l, 0 else + print(f"A^k converges to\n{np.matmul( np.matmul(Av, np.diag(l)), np.linalg.inv(Av) )}") + +print("\nSection 5.2: #31") +for u in ((3, 1), (3, -1), (6,0)): + L = np.diag(Aw**10) + lim = np.matmul(np.matmul( np.matmul(Av, L), np.linalg.inv(Av) ), u) + print(f"Limit of u0 = {u}: {lim}") + +print("\nSection 5.2: #45") +A = np.array( ((.6, .2),(.4,.8)) ) +Alim = np.array( ((1/3, 1/3),(2/3, 2/3)) ) + +Aw,Av = np.linalg.eig(A) +Alimw,Alimv = np.linalg.eig(Alim) + +print(f"These matrices have the same eigenvectors\n{Aw}\nand\n{Alimw},") +print("The limit of eigenvalues of A^k is A^\infty, so A^100 is close " + "(exponents quickly approach their asymptotes).\n" + f"Eigenvalues of A are {Av}, and of A^\infty are {Alimv}") + +print("Section 5.3: #3") +f = np.array(((1,1), (1,0))) +k = f +for i in range(1,5): + print(f"F^{i} =\n{k}") + k = np.matmul(k, f) + +n = 20 +fn = round(((1+np.sqrt(5))/2)**n/np.sqrt(5)) +print(fn) + +print("\nSection 5.3: #7") + +l = (2, 1) +for x in range(9): + l = (l[1], l[0] + l[1]) +print(f"Exactly, {l[1]}") + +l1 = (1+np.sqrt(5))/2 +print(f"Approximately, L_{10} = {round(l1**10)}") + +print("Section 5.3: #16") +A = np.array( ((0, -1), (1, 0)) ) +stdeig = np.linalg.eig(A) +print(stdeig) +I = np.eye(A.shape[0]) +est = ( I+A, np.linalg.inv(I-A), np.matmul( np.linalg.inv(I - A/2), + I+A/2 ) ) +names = ( "Forward", "Backward", "Centered" ) +for f,name in zip(est, names): + w,v = np.linalg.eig(f) + print(f"{name} approximation has eigenvalues {w}.") + if all(np.isclose(abs(e), 1) for e in w): + print(f"{name} stays on the circle because all the eigenvalues " + "have magnitude 1.") + +print("\nSection 5.3: #29") + +B = ((3, 2), (-5, -3)) +C = ((5, 7), (-3, -4)) + +w,v = np.linalg.eig(B) +print(f"B ({B}) has eigenvalues\n{w}, and B^4 has eigenvalues\n{w**4} =" + " (1, 1), meaning that it is the identity.") +w,v = np.linalg.eig(C) +print(f"C ({C}) has eigenvalues\n{w}, and C^3 has eigenvalues\n{w**3} =" + " (-1, -1), meaning that it is the skew identity -I.") + +print("\nSection 5.4: #28") +for x in range(1000): +# my'' + by' + ky = 0 +# u = (y,y')^T +# u' = (y',y'')^T +# my'' = - (by' + ky) +# y' = y + m,b,k = (np.random.rand(), np.random.rand(), np.random.rand()) + A = (( 0, 1), + (-b,-k)) + M = (( 1, 0), + ( 0, m)) + # Mu' = Au => u' = Bu + B = np.matmul( np.linalg.inv(M), A ) + w,v = np.linalg.eig(B) + +print("\nChecking that roots of characteristic polynomial = eigenvalues") +lamda = sympy.symbols('lamda') +for x in range(50): + npmat = np.random.rand(10, 10) + npmat += np.transpose(npmat) # make it symmetric for ease of proof + mat = sympy.Matrix(npmat) + + poly = mat.charpoly(lamda) + + w,v = np.linalg.eig(npmat) + roots = sorted(np.array(poly.nroots(), dtype='float64')) + w = sorted(w) + if not np.allclose(w, roots, atol=.001): + print("This property doesn't hold for all matrices") + +# Power method for eigenvalues and characteristic polynomials (see doc) + +print("\nPower Method for estimating the dominant eigen{vector,value}") +matrix = np.random.rand(20, 20) +w,v = np.linalg.eig(matrix) +truedominant = max(*w) + +# a random vector will almost never be in the span of a subset of +# eigenvectors, so we will use np.random.rand +vec = np.random.rand(20) +for x in range(50): # 50 iterations of the power method + vec = vec / np.linalg.norm(vec) + prev = vec + vec = matrix @ vec + val = np.linalg.norm(vec) / np.linalg.norm(prev) +print(f"power method gives a dominant value {val}, compared to true {truedominant}") diff --git a/zhilova/final.tex b/zhilova/final.tex new file mode 100644 index 0000000..10b93f7 --- /dev/null +++ b/zhilova/final.tex @@ -0,0 +1,179 @@ +\newfam\rsfs +\newfam\bbold +\def\scr#1{{\fam\rsfs #1}} +\def\bb#1{{\fam\bbold #1}} +\let\oldcal\cal +\def\cal#1{{\oldcal #1}} +\font\rsfsten=rsfs10 +\font\rsfssev=rsfs7 +\font\rsfsfiv=rsfs5 +\textfont\rsfs=\rsfsten +\scriptfont\rsfs=\rsfssev +\scriptscriptfont\rsfs=\rsfsfiv +\font\bbten=msbm10 +\font\bbsev=msbm7 +\font\bbfiv=msbm5 +\textfont\bbold=\bbten +\scriptfont\bbold=\bbsev +\scriptscriptfont\bbold=\bbfiv + +\def\E{\bb E} +\def\P{\bb P} +\newcount\qnum +\def\fr#1#2{{#1\over #2}} +\def\var{\mathop{\rm var}\nolimits} +\def\cov{\mathop{\rm cov}\nolimits} +\def\dd#1#2{\fr{\partial #1}{\partial #2}} +\def\bmatrix#1{\left[\matrix{#1}\right]} + +\def\problem#1{\vskip0pt plus 2in\goodbreak +\vskip0pt plus -2in\medskip\noindent{\bf #1)}\smallskip\penalty500} +\def\part#1{\goodbreak\smallskip\noindent{\bf (#1)}\penalty500\par} + +\problem{1} +\part{a} +\let\truebeta\beta +\def\beta{\hat\truebeta} +$${\cal L}(\beta;X_1,\ldots,X_n) = \prod_{i=1}^{n} {1\over +\Gamma(\alpha)\beta^\alpha}X_i^{\alpha-1}e^{-X_i/\beta}$$ +$$\ell(\beta) = \ln{\cal L}(\beta) = -n\ln(\Gamma(\alpha)) - \alpha n\ln\beta + + \sum_{i=1}^n [(\alpha-1)\ln(X_i) - X_i/\beta].$$ +$${d\ell(\beta)\over d\beta} = -{\alpha n\over\beta} + \sum_{i=1}^n +{X_i\over\beta^2} = 0 \to \sum_{i=1}^n X_i = \beta \alpha n \to \beta += \overline X/\alpha = \overline X/4,$$ +where $\overline X = \fr1n \sum_{i=1}^n X_i.$ + +\part{b} +\let\beta\truebeta +$$\E(\overline X) = \fr1n\sum_{i=1}^n \E X = \E X,$$ +so $\E\hat\beta = \E X / \alpha.$ +$$\E X = \int_0^\infty {x^\alpha e^{-x/\beta}\over\Gamma(\alpha)\beta^\alpha} dx += \alpha\beta\int_0^\infty {x^\alpha e^{-x/\beta}\over +\Gamma(\alpha+1)\beta^{\alpha+1}} dx += \alpha\beta,$$ +because the integrand is the gamma distribution for $\alpha' = +\alpha+1.$ Therefore, the estimator is unbiased because +$\E\hat\beta = \alpha\beta/\alpha = \beta.$ + +\part{c} +By the central limit theorem, as $n\to\infty,$ $\hat\beta \sim +{\cal N}(\E (\hat\beta), \var(\hat\beta)/n) = {\cal N}(\beta, +\var(\hat\beta)/n),$ so if +$\var \hat\beta<\infty,$ the estimator is consistent. + +The mgf of $X_k$ is $(1-\beta t)^\alpha,$ so the mgf of +$Y = \sum_{i=1}^n X_i$ is $(1-\beta t)^{n\alpha}.$ +$$Y \sim \Gamma(\alpha n, \beta) \to \overline X \sim \Gamma(\alpha n, +\beta/n) \to \hat\beta \sim \Gamma(\alpha n, \beta/n\alpha),$$ +by change of variable in the gamma distribution.% +\footnote{*}{$X\sim \Gamma(\alpha, \beta)$ has pdf +${1\over\Gamma(\alpha)\beta^\alpha}x^{\alpha-1}e^{-x\over\beta},$ so +$kX$ has pdf +${1\over\Gamma(\alpha)\beta^\alpha}(kx)^{\alpha-1}e^{-kx\over\beta},$ +giving $kX \sim \Gamma(\alpha, k\beta).$} +The gamma function has variance $\alpha\beta^2,$ so the variance of +$\hat\beta$ is $\beta^2/n\alpha,$ which is less than infinity, so the +estimator is consistent (and it will tend to zero). +% to prove, and to find variance. actually, we don't need to find +% variance for this problem, but we do for (d). find the lecture!! + +\part{d} + +Since we've already proven $\E(\hat\beta) = \beta$ and obtained a value +for $\var\hat\beta,$ we get the following result by the Central Limit +Theorem, +$\sqrt n(\hat\beta - \beta) \to {\cal N}(0, \var(\hat\beta)) = +{\cal N}(0, \beta^2/n\alpha)$ + +\problem{2} + +\part{a} + +With $\theta = 0,$ by Student's Theorem, +$${\overline X\over S/\sqrt{n}} \sim t(n-1).$$ +Taking $t_{1-\alpha}(n-1)$ to be the $1-\alpha$ quantile of the +t-distribution with $n-1$ degrees of freedom, we have a test ${\overline +X\over S/\sqrt{n}} \geq t_{1-\alpha}(n-1).$ + +Substituting in our given values ($\overline X = .8,$ $n = 25,$ $S^2 = +2.56$), +$${.8\over 1.6/\sqrt{25}} \geq 1.711 \to 2.5 \geq 1.711,$$ +so our data does pass the test. + +\part{b} + +\def\cdf{{\bf T}} +Letting $\cdf$ be the cdf of a t-distribution with $n-1$ degrees of +freedom, we use the following result of student's theorem +$${\overline X - \theta\over S/\sqrt n} \sim t(n-1)$$ +to get the probability this static is in the critical set as +$$\gamma_C(\theta) = \P({\overline X\over S/\sqrt n} > 1.711) = +\P({\overline X-\theta\over S/\sqrt n} > 1.711-{\theta\over S/\sqrt n}) +$$$$ += 1-\cdf(1.711-{\theta\over S/\sqrt n}) = +1-\cdf(1.711-{\theta\over .32}) += \cdf({25\theta\over8} - 1.711). +$$ + +\problem{3} + +\part{a} + +The cdf of $X_i$ on the support of its pdf $[0,1],$ is $x,$ (zero on +$x<0$ and one on $x>1$) +With $X_{(1)} = \min(X_1,\ldots,X_6)$ and $X_{(6)} = +\max(X_1,\ldots,X_6),$ +$$\P(X_{(1)} \geq x) = \P(X_1 \geq x)\P(X_2 \geq x)\cdots\P(X_6 \geq x) += (1-x)^6 \to \P(X_{(1)} \leq x) = 1-(1-x)^6.$$ +$$\P(X_{(6)} \leq x) = \P(X_1 \leq x)\P(X_2 \leq x)\cdots\P(X_6 \leq x) += x^6.$$ + +These give pdfs for $X_{(1)}$ and $X_{(6)},$ respectively, $6(1-x)^5$ +and $6x^5.$ + +\part{b} + +$$\E(X_{(1)} + X_{(6)}) = \int_0^1 x(6(1-x)^5 + 6x^5) dx =$$$$ +\left[ x(-(1-x)^6 + x^6) \right]_0^1 - \int_0^1 -(1-x)^6 + x^6 dx = +1 - \fr17\left[-(1-x)^7 + x^7\right]_0^1 = 1. +$$ + +This makes sense by symmetry. The maximum value of the set has the same +pdf as the minimum value reflected about .5, so we expect $\E X_{(6)} = +1 - \E X_{(1)}.$ + +\problem{4} + +\part{a} + +$$Y := 2X_2 - X_1 = \pmatrix{-1&2&0}{\bf X} = t^T{\bf X}.$$ +$$\E Y = t^T\E{\bf X} = -1(-1) + 2(2) = 5.$$ +$$\var Y = \E(t^TXX^Tt) - \E(t^TX)\E(X^Tt) = t^T(\var X)t = +\bmatrix{-1&2&0}\bmatrix{4&-1&0\cr-1&1&0\cr0&0&2}\bmatrix{-1\cr2\cr0} = +12. +$$ + +\def\cdf{{\bf\Phi}} +Where $\cdf$ is the cdf of the standard normal distribution, we +normalize $2X_2-X_1,$ to reach the standard normal and get +$$\P(2X_2 > X_1 + 3) = \P(2X_2 - X_1 - 5 > -2) = \P((2X_2 - X_1 - +5)/\sqrt{12} > -2/\sqrt{12}) = 1-\cdf(-1/\sqrt{3}) \approx .793.$$ + +\part{b} + +If $X,Y \sim {\cal N}(0,1)$ and $X\perp Y,$ $X^2 + Y^2 \sim \chi^2(2)$ +by the definition of $\chi^2.$ + +For our problem, $Y^TY \sim \chi^2(2)$ if $Y$ is a multivariate normal +with +$$\E Y = \pmatrix{0\cr0} \qquad \var Y = \pmatrix{1&0\cr0&1}.$$ + +$$\var (X_1,X_3)^T = \pmatrix{4&0\cr0&2} \to Y = +\pmatrix{1/2&0\cr0&1/\sqrt2}(X_1,X_3)^T + \mu,$$ +$A$ given by $(\var (X_1,X_3)^T)^{-1/2},$ from $A = \Sigma^{-1/2}$ +(3.5.12) in the textbook. + +$$\E Y = \bmatrix{-1/2\cr\sqrt2} + \mu = 0 \to \mu = +\bmatrix{1/2\cr -\sqrt2}\qquad A = \bmatrix{1/2&0\cr0&1/\sqrt2}$$ + +\bye diff --git a/zhilova/midterm2.tex b/zhilova/midterm2.tex new file mode 100644 index 0000000..8e74cf8 --- /dev/null +++ b/zhilova/midterm2.tex @@ -0,0 +1,146 @@ +\def\problem#1{\goodbreak\bigskip\noindent{\bf #1)}\smallskip\penalty500} +\newfam\rsfs +\newfam\bbold +\def\scr#1{{\fam\rsfs #1}} +\def\bb#1{{\fam\bbold #1}} +\let\oldcal\cal +\def\cal#1{{\oldcal #1}} +\font\rsfsten=rsfs10 +\font\rsfssev=rsfs7 +\font\rsfsfiv=rsfs5 +\textfont\rsfs=\rsfsten +\scriptfont\rsfs=\rsfssev +\scriptscriptfont\rsfs=\rsfsfiv +\font\bbten=msbm10 +\font\bbsev=msbm7 +\font\bbfiv=msbm5 +\textfont\bbold=\bbten +\scriptfont\bbold=\bbsev +\scriptscriptfont\bbold=\bbfiv + +\def\E{\bb E} +\def\P{\bb P} +\newcount\qnum +\def\fr#1#2{{#1\over #2}} +\def\var{\mathop{\rm var}\nolimits} +\def\cov{\mathop{\rm cov}\nolimits} +\def\dd#1#2{\fr{\partial #1}{\partial #2}} + +\problem{1} +\noindent{\bf (a)} +$$\E(Z) = \pmatrix{1\cr0}\qquad \var(Z) = \pmatrix{2&c\cr c&4}$$ + +\noindent{\bf (b)} +Covariance is a bilinear function, and $\var (kX) = \cov(kX,kX) = +k^2\var X.$ Also, $\cov(c, X) = 0,$ if $c$ is a constant, regardless of +$X.$ (because $\cov(c, X) = \E(cX) - \E(c)\E(X) = c\E(X) - c\E(X) = 0.$) +With linearity, this means $\cov(X+c, Y+b) = \cov(X, Y).$ +$$\rho(2X-1, 5-Y) = +{\cov(2X-1, 5-Y)\over\sqrt{\var(2X-1)}\sqrt{\var(5-Y)}} = +{\cov(2X, -Y)\over\sqrt{\var(2X)}\sqrt{\var(-Y)}} = $$$$ +{-2\cov(X, Y)\over2\sqrt{\var(X)}\sqrt{\var(Y)}} = +-{.5\over\sqrt{2}\sqrt{4}} = +-{\sqrt2\over8}.$$ + +\noindent{\bf (c)} + +$X$ and $Y$ are not necessarily independent from each other, although +independence would give a covariance of 0 ($p_XY(x,y) = p_X(x)p_Y(y) +\to \E(XY) = \E(X)\E(Y).$) + +Let $W \sim \cal N(0, 1),$ and $Z \sim 2\cal B(.5) - 1$ (i.e. it has a +.5 probability of being -1 or 1). +$X := \sqrt2 W + 1$ and $Y := 2ZW.$ +These are strictly dependent because $Y = \sqrt2Z(X-1),$ so $Y$ has +conditional distribution $\sqrt2(x-1)(2\cal B(.5) - 1),$ which is +clearly not equal to its normal distribution (which can be fairly easily +verified by symmetry of $W$). +However, they have covariance 0: +$$\E(XY) - \E X\E Y = \E((\sqrt2 W + 1)2ZW) - \E(\sqrt 2 W + 1)\E(2ZW) +$$$$ += \E(2\sqrt2 ZW^2) - \E(\sqrt 2 W)\E(2ZW) += 0 - 0\E(2ZW) = 0. +$$ + +% wikipedia says no + +\problem{2} +\noindent{\bf (a)} + +\def\idd#1#2{\dd{#1}{#2}^{-1}} +$Y_1 = 2X_2$ and $Y_2 = X_1 - X_2$ give us $X_2 = Y_1/2$ and +$X_1 = Y_2 + Y_1/2.$ This lets us compute Jacobian +$$J = \left|\matrix{\idd{x_1}{y_1} &\idd{x_1}{y_2}\cr + \idd{x_2}{y_1} &\idd{x_2}{y_2}}\right| + = \left|\matrix{2&1\cr2&0}\right| = -2.$$ +$$g(y_1, y_2) = \left\{\vcenter{\halign{\strut$#$,&\quad$#$\cr + |J|2e^{-(y_2+y_1/2)}e^{-y_1/2} & 0 < y_2+y_1/2 < y_1/2\cr + 0 & {\rm elsewhere}\cr + }}\right.$$ +$y_2+y_1/2 < y_1/2 \to y_2 < 0 \to -y_2 > 0.$ +And $0 < y_2 + y_1/2 \to y_1 > -2y_2 > 0.$ +$$ = \left\{\vcenter{\halign{\strut$#$,&\quad$#$\cr + 4e^{-y_2}e^{-y_1}&y_1 > -2y_2 > 0\cr + 0&{\rm elsewhere}\cr + }}\right.$$ + +\noindent{\bf (b)} + +$$g(y_1) = \int_{-\infty}^\infty g(y_1,y_2)dy_2 = +\bb I(y_1>0)\int_{-y_1/2}^0 4e^{-y_1}e^{-y_2} dy_2 = +\bb I(y_1>0)4e^{-y_1}(1-e^{y_1/2}).$$ +$$g(y_2) = \int_{-\infty}^\infty g(y_1,y_2)dy_1 = +\bb I(y_2<0)\int_{-2y_2}^\infty 4e^{-y_1}e^{-y_2} dy_1 = +\bb I(y_2<0)4e^{-y_2}(-e^{2y_2}) +.$$ + +\noindent{\bf (c)} + +They are independent iff $g(y_1,y_2) \bb I(y_1 > -2y_2 > 0)e^{-y_1-y_2} += g(y_1)g(y_2) = \bb I(y_1 > 0)\bb I(y_2 < 0) h(x),$ +where $h(x)$ is the strictly non-zero product of exponents that would +result, showing that they are dependent (if $y_1 = -y_2 = 1,$ the right +indicators are satisfied but not the left indicator, and since $h(x)$ is +non-zero, we see a contradiction.) + +\problem{3} +\noindent{\bf (a)} +We start determining the mgf from the pdf of $X,$ +$p_X(x) = +\fr1{\sqrt{2\pi}}e^{-\fr12x^2}.$ +$$\E(e^{tX}) = +\int_{-\infty}^\infty e^{tx}\fr1{\sqrt{2\pi}}e^{-\fr12x^2} dx = +\fr1{\sqrt{2\pi}} \int_{-\infty}^\infty e^{tx-\fr12x^2} dx = $$$$ +\fr1{\sqrt{2\pi}} \int_{-\infty}^\infty e^{tx-\fr12x^2-\fr12t^2 + \fr12t^2} dx = +e^{\fr12t^2} \int_{-\infty}^\infty \fr1{\sqrt{2\pi}}e^{-\fr12(x-t)^2} dx += e^{\fr12t^2}, +$$ +by the final integrand being a normal pdf and therefore integrating to +1. + +\noindent{\bf (b)} +$$M_Y(t) = \E(e^{t(aX+b)}) = \E(e^{bt}e^{atX}) = e^{bt}\E(e^{atX}) = +e^{bt}M_X(at) = e^{bt}e^{\fr12(at)^2}.$$ + +\noindent{\bf (c)} + +Theorem 1.9.2 states that two probability distribution functions are +alike if and only if their moment generating functions are equal in some +vicinity of zero. +The mgf of $Y$ corresponds to $\cal N(b, a^2),$ which has the following +mgf (by computation from its pdf definition): +$$\int_{-\infty}^\infty e^{tx}\fr1{a\sqrt{2\pi}}e^{-(x-b)^2\over +2a^2} dx = +\fr1{a\sqrt{2\pi}}\int_{-\infty}^\infty e^{2a^2tx - x^2 + 2bx - b^2\over +2a^2} dx =$$$$ +\fr1{a\sqrt{2\pi}}\int_{-\infty}^\infty e^{-(b+a^2t)^2 + +2(a^2t+b)x - x^2 - b^2 + (b+a^2t)^2\over 2a^2} dx = +e^{(b+a^2t)^2-b^2\over 2a^2}\int_{-\infty}^\infty +\fr1{a\sqrt{2\pi}}e^{-(b+a^2t+x)^2 \over 2a^2} dx = +e^{bt}e^{(at)^2\over2}, +$$ +proving $Y \sim \cal N(b, a^2),$ because this function is convergent +everywhere, and reusing the fact that the final integrand is a normal +pdf, so it must integrate to 1. + +\bye -- cgit