From 8dafd8aec819e85fd36cbd1d6231aad24e62c31b Mon Sep 17 00:00:00 2001 From: Holden Rohrer Date: Tue, 16 Aug 2022 18:21:57 -0400 Subject: Finished work from last semester --- gupta/portfolio.tex | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-) (limited to 'gupta') diff --git a/gupta/portfolio.tex b/gupta/portfolio.tex index 25b41b3..44e71a5 100644 --- a/gupta/portfolio.tex +++ b/gupta/portfolio.tex @@ -66,19 +66,31 @@ Squaring both sides, we find $$6 = {p^2\over q^2} \to p^2 = 6q^2 = 2(3q^2),$$ from which $3q^2\in\bb Z$ tells us $2\mid p^2.$ -{\bf Lemma.} +{\bf Lemma 1.} We will show that $2\mid p^2$ implies $2\mid p$ by contrapositive. Let $2\nmid p,$ so $p = 2k + 1$ for some $k\in\bb Z.$ We then compute $p^2 = 4k^2 + 4k + 1 = 2(2k^2+2k) + 1,$ and $2k^2+2k\in\bb Z,$ so $2\nmid p^2.$ \endproof -By the lemma, $2\mid p$ and $4\mid p^2,$ so there exists $k\in\bb Z$ -s.t. $p^2 = 4k.$ -We then get $4k = 6q^2$ and $2k = 3q^2.$ % TODO missing proof that 2k=nm. -So $q^2$ must be even, and as we've shown $2\mid q^2$ gives $2\mid q.$ -Thus, $\gcd(p,q) = 2 \neq 1,$ giving a contradiction, meaning $\sqrt 6$ -is irrational. +{\bf Lemma 2.} +We will show that if $2\mid nm,$ then $2\mid n$ or $2\mid m$ by +contrapositive. +Let $2\nmid n$ and $2\nmid m,$ or by definition of odd, $n=2r+1$ and +$m=2s+1.$ +Then, +$$nm = (2r+1)(2s+1) = 4rs+2r+2s+1 = 2(2rs+r+s)+1,$$ +and $2rs+r+s\in\bb Z$ by integer closure, so $2\nmid nm$ by definition +of odd. +\endproof + +By the first lemma, $2\mid p$ and $4\mid p^2,$ so there exists $k\in\bb +Z$ s.t. $p^2 = 4k.$ +We then get $4k = 6q^2$ and $2k = 3q^2.$ +By the second lemma, $2\nmid 3,$ and $k\in\bb Z,$ so $q^2$ must be even, +and as we've shown $2\mid q^2$ gives $2\mid q.$ +Thus, $\gcd(p,q) \geq 2 \neq 1,$ giving a contradiction, meaning $\sqrt +6$ is irrational. \endproof \problem{4.} Equivalence proof @@ -145,7 +157,7 @@ $k>2,$ $F_k = F_{k-1} + F_{k-2}.$ We will show this identity for all $n\in\bb Z,$ where $n\geq 1,$ by induction. -For $n=1,$ $\sum_{k=1}^n F_k^2 = F_1^2 = 1 = 1\cdot 1 = F_1F_2.$ +For $n=1,$ we find $\sum_{k=1}^n F_k^2 = F_1^2 = 1 = 1\cdot 1 = F_1F_2.$ We now assume for some $j\geq 1,$ $$\sum_{k=1}^j F_k^2 = F_jF_{j+1},$$ -- cgit