From 1e3c434c8b108a5abd9f6810d629c3ae83face98 Mon Sep 17 00:00:00 2001 From: Holden Rohrer Date: Tue, 31 Aug 2021 17:06:06 -0400 Subject: added notes for math classes and the first non-computing homework --- li/hw1.tex | 166 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 166 insertions(+) create mode 100644 li/hw1.tex (limited to 'li/hw1.tex') diff --git a/li/hw1.tex b/li/hw1.tex new file mode 100644 index 0000000..1676065 --- /dev/null +++ b/li/hw1.tex @@ -0,0 +1,166 @@ +{\bf\noindent 10.} + +$(0, y_1)$, $(1, y_2)$, and $(2, y_3)$ lie on the same line if $(2, y_3) += k(1, y_2 - y_1) + (0, y_1) = (k, ky_2 - (k-1)y_1) \to y_3 = 2y_2 - y_1.$ + +{\bf\noindent 11.} + +For $a = 2$ and $a = -2,$ the columns are linearly dependent, and there +is a line of solutions. + +{\bf\noindent 15.} + +"Lines." "2." "the column vectors." + +{\bf\noindent 22.} + +If $(a,b)$ is a multiple of $(c,d),$ $c/a = d/b \to c/d = a/b,$ so $(a, +c)$ is a multiple of $(b, d)$. + +{\bf\noindent 5.} + +$0$ gives no solutions. $20$ gives infinitely many solutions. These +solutions include $(4, -2)$ and $(0, 5).$ + +{\bf\noindent 8.} + +$k=3,$ $k=0,$ and $k=-3$ cause elimination to break down. $k=3$ makes +the system inconsistent, so it has 0 solutions, $k=-3$ causes +infinite solutions, and $k=0$ is consistent with 1 solution but requires +a row exchange. + +{\bf\noindent 12.} + +If $d=10,$ a row exchange is required, giving a triangular system +$$\pmatrix{2&5&1\cr 0&1&-1\cr 0&0&-1}\pmatrix{x\cr y\cr z} = +\pmatrix{0\cr 3\cr 2}$$ + +{\bf\noindent 19.} + +"Combination." $2x - y = 0$ cannot be solved. + +{\bf\noindent 28.} + +{\it (a)} + +False. If the second row doesn't start with a zero coefficient, then a +multiple of row 1 will be (indirectly) subtracted from row 3 when row 2 +is subtracted from row 3. + +{\it (b)} + +False. After eliminating the $u$ column from the third row, a $v$ +``residue'' might remain. + +{\it (c)} + +True. The third row is already fully ``solved'' for back-substitution. + +{\bf\noindent 22.} + +{\it (a)} + +$$\pmatrix{1&0&0\cr -5&1&0\cr 0&0&1\cr}$$ + +{\it (b)} + +$$\pmatrix{1&0&0\cr 0&1&0\cr 0&-7&1\cr}$$ + +{\it (c)} + +$$\pmatrix{0&1&0\cr 0&0&1\cr 1&0&0\cr}$$ + +{\bf\noindent 27.} + +$R_{31}$ should add 7 times row 1 to row 3. $E_31R_31 = I_3.$ + +{\bf\noindent 29.} + +{\it (a)} + +$$E_{13} = \pmatrix{1&0&1\cr 0&1&0\cr 0&0&1}$$ + +{\it (b)} + +$$\pmatrix{1&0&1\cr 0&1&0\cr 1&0&1}$$ + +{\it (c)} + +$$\pmatrix{2&0&1\cr 0&1&0\cr 1&0&1}$$ + +{\bf\noindent 42.} + +{\it (a)} + +True. + +{\it (b)} + +False, they just have to be $m\times n$ and $n\times m.$ + +{\it (c)} + +True, but they don't have the same dimensions. + +{\it (d)} + +False. This is only true if $B$ is invertible. + +{\bf\noindent 51.} + +$AX = I_3.$ + +{\bf\noindent 6.} + +$$E^2 = \pmatrix{1&0\cr12&1}$$ +$$E^8 = \pmatrix{1&0\cr48&1}$$ +$$E^{-1} = \pmatrix{1&0\cr-6&1}$$ + +{\bf\noindent 9.} + +{\it (a)} + +If none of $d_1,$ $d_2,$ or $d_3$ are zero, the product is nonsingular. +% Prove it + +{\it (b)} + +Solving this first system, $c = b,$ by substitution. + +Then we have $$Dd = c \to d = \pmatrix{0\cr0\cr 1/d_3}$$ +and $$Vx = d \to \pmatrix{1 & -1 & 0\cr 0 & 1 & -1 \cr 0 & 0 & +1}\pmatrix{x_1\cr x_2\cr x_3} = d \to x_3 = x_2 = x_1 = 1/d_3.$$ + +{\bf\noindent 19.} + +In the second matrix, $c=0$ requires a row exchange, and $c=3$ would +make the matrix singular. + +In the first matrix, it is singular if $3b = 40-10a.$ +And it requires a row exchange if $a=4$ and $b\neq 0.$ + +{\bf\noindent 31.} + +$$\pmatrix{1&1&0\cr 1&2&1\cr 0&1&2} = \pmatrix{1&0&0\cr 1&1&0\cr 0&1&1} +\pmatrix{1&1&0\cr 0&1&1\cr 0&0&1} = +\pmatrix{1&0&0\cr 1&1&0\cr 0&1&1}\pmatrix{1&0&0\cr0&1&0\cr0&0&1}\pmatrix{1&1&0\cr 0&1&1\cr 0&0&1} +$$ + +$$\pmatrix{a&a&0\cr a&a+b&b\cr 0&b&b+c} = +\pmatrix{1&0&0\cr1&1&0\cr0&1&1}\pmatrix{a&a&0\cr 0&b&b\cr 0&0&c} = +\pmatrix{1&0&0\cr1&1&0\cr0&1&1}\pmatrix{a&0&0\cr0&b&0\cr0&0&c}\pmatrix{1&1&0\cr 0&1&1\cr 0&0&1} +$$ + +{\bf\noindent 32.} + +$$Lc = b \to \pmatrix{1&0\cr4&1}c = \pmatrix{2\cr 11} \to c = +\pmatrix{2\cr 3}.$$ +$$Ux = c \to \pmatrix{2&4\cr0&1}x = \pmatrix{2\cr 3} \to x = +\pmatrix{-5\cr 3}.$$ + +$$A = LU = \pmatrix{1&0\cr4&1}\pmatrix{2&4\cr0&1} = +\pmatrix{2&4\cr8&17}.$$ +$$\pmatrix{2&4\cr8&17}x = \pmatrix{2\cr 11} \to \pmatrix{2&4\cr0&1}x = +\underline{\pmatrix{2\cr3}} \to x = \pmatrix{-5\cr 3}$$ + +\bye -- cgit