From ebe8ba7ffdeda20a05ac2668c51058e828b7a494 Mon Sep 17 00:00:00 2001 From: Holden Rohrer Date: Wed, 25 Aug 2021 15:34:08 -0400 Subject: finished prerequisites test for zhilova --- zhilova/prereq.tex | 108 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 108 insertions(+) create mode 100644 zhilova/prereq.tex (limited to 'zhilova/prereq.tex') diff --git a/zhilova/prereq.tex b/zhilova/prereq.tex new file mode 100644 index 0000000..56edac1 --- /dev/null +++ b/zhilova/prereq.tex @@ -0,0 +1,108 @@ +{\bf Problem 1.} + +$$(cX - ac)(cY - bc)(cZ - bc) = c^3(X-a)(Y-b)(Z-b) = c^3(XYZ - XYb - XZb ++ Xb^2 - aYZ + aYb + abZ - ab^2)$$ +This is $c^3XYZ - c^3XYb - c^3XZb + c^3Xb^2 - c^3aYZ + c^3aYb + c^3abZ +- c^3ab^2,$ based on repeated application of the distributive property. + +{\bf Problem 2.} + +{\bf (a)} +$$\sum_{i=1}^n Ca_i + Cb_i.$$ + +{\bf (b)} + +$$\sum_{i=1}^n\sum_{j=1}^n Ca_ia_j$$ + +{\bf (c)} + +$$\sum_{i=1}^n (c_1a_i + c_2b_i)$$ + +{\bf Problem 3.} + +$$\log_3(81) + 2\log_4(1024^{-1}) = 4 - 2\cdot 5 = -6$$ + +{\bf Problem 4.} + +$$\int_{-1}^1 xdx = \left[ x^2/2 \right]_{-1}^1 = 0.$$ + +$$\int_{-1}^1 x^2dx = \left[ x^3/3 \right]_{-1}^1 = 1/3 - (-1/3) = 2/3$$ + +$$\int_0^1 (x-a)^2 dx = \left[ (x-a)^3/3 \right]_0^1=((1-a)^3 + a^3)/3$$ + +{\bf Problem 5.} + +$$\int_0^\infty e^{-2x} dx = \lim_{x\to\infty}(e^{-2x} - e^0) = -1.$$ + +$$\int_{-\infty}^\infty e^{-2x} dx = \lim_{x\to\infty}(e^{-2x} - e^2x) = +-\infty.$$ + +{\bf Problem 6.} + +$A,$ $B,$ and $C,$ as bounded intervals, are sets. By definition, if +$x\in A \lor B,$ $x\in A\cap B,$ so if $A\supset C$ and $B\supset +C,$ $\forall x\in C\to x\in A\cap B.$ + +{\bf Problem 7.} + +{\bf (a) } +$$\int_{-\infty}^\infty f(x, y) dx = \int_0^y 24x^3y dx = 6y^5,$$ +on $y\in[0,1],$ $0$ elsewhere. + +$$\int_{-\infty}^\infty f(x, y) dx = \int_x^1 24x^3y dy = \left[ +12x^3y^2 \right]_x^1 = 12x^3(1-x^2),$$ on $x\in[0,1],$ $0$ elsewhere. + +{\bf (b) } + +Integrating over the plane is equivalent to a double integral across +both variables from $-\infty$ to $\infty,$ so we can find it by + +$$\int_0^1 6y^5 dy = 1.$$ + +{\bf Problem 8.} + +No. +Let $f(x,y)$ be $2$ on $0