\documentclass[10pt,twoside]{article} \usepackage{amssymb,amsmath,amsthm,amsfonts, epsfig, graphicx, dsfont, bbm, bbold, url, color, setspace, multirow,pinlabel,tikz,pgfplots} \usepackage[all]{xy} \usepackage{fancyhdr} \setlength{\voffset}{-1in} \setlength{\topmargin}{0in} \setlength{\textheight}{9.5in} \setlength{\textwidth}{6.5in} \setlength{\hoffset}{0in} \setlength{\oddsidemargin}{0in} \setlength{\evensidemargin}{0in} \setlength{\marginparsep}{0in} \setlength{\marginparwidth}{0in} \setlength{\headsep}{0.25in} \setlength{\headheight}{0.5in} \pagestyle{fancy} \onehalfspace \fancyhead[LO,LE]{Math 2106 - Dr. Gupta} \fancyhead[RO,RE]{Due Thursday 1/20/2022 at 11:59 pm} \chead{\textbf{}} \cfoot{} \fancyfoot[LO,LE]{} \fancyfoot[RO,RE]{Page \thepage\ of \pageref{LastPage}} \renewcommand{\footrulewidth}{0.5pt} \parindent 0in \makeatletter \def\old@comma{,} \catcode`\,=13 \def,{% \ifmmode% \old@comma\discretionary{}{}{}% \else% \old@comma% \fi% } \makeatother \let\implies\Rightarrow \def\lnot{{\sim}} %% ------------------------------------------------------%% %% -------------------Begin Document---------------------%% %% ------------------------------------------------------%% \begin{document} \begin{center} \huge{\bf{Homework 2} - Holden Rohrer} \end{center} \medskip \noindent \large{\textbf{Collaborators:}} \medskip \begin{itemize} \item Hammack 1.1: 16, 28, 52 \begin{itemize} \item[16.] Write the set $\{6a + 2b ~|~ a, b \in \mathbb Z\}$ by listing its elements between curly braces. \begin{proof}[Answer] If and only if $x$ is in this set, $x+6$ and $x+2$ are in this set. $0$ is in this set with $a=0$ and $b=0.$ This is the set of even numbers $\{\ldots,-4,-2,0,2,4,\ldots\}.$ \end{proof} \item[28.] Write the set $\{\ldots, -\frac32, -\frac34, 0, \frac34, \frac32, \frac94, 3, \frac{15}4, \frac92\}$ in set-biulder notation. \begin{proof}[Answer] This set is $\{\frac34 x : x \in \mathbb Z\}.$ \end{proof} \item[52.] Sketch the set of points $\{(x,y)\in\mathbb R^2 : (y-x^2)(y+x^2) = 0\}.$ \begin{proof}[Answer] This set is the union of the two graphs $y = x^2$ and $y = -x^2.$ \begin{figure}[h!] \centering \begin{tikzpicture}[scale=3] \draw[<->] (-1,0) -- (1,0) node[right] {$x$}; \draw[<->] (0,-1) -- (0,1) node[above] {$y$}; \draw (0,0) parabola (1,1); \draw (0,0) parabola (-1,1); \draw (0,0) parabola (1,-1); \draw (0,0) parabola (-1,-1); \end{tikzpicture} \end{figure} %%TO DRAW \end{proof} \end{itemize} \item Hammack 1.2: 2 \begin{itemize} \item[2.] Suppose $A = \{\pi,e,0\}$ and $B = \{0,1\}.$ \begin{itemize} \item[(a)] Write out $A\times B.$ \begin{proof}[Answer] $A\times B = \{(\pi,0), (\pi, 1), (e,0), (e,1), (0,0), (1,0)\}.$ \end{proof} \item[(b)] Write out $B\times A.$ \begin{proof}[Answer] $B\times A = \{(0,\pi), (1,\pi), (0,e), (1,e), (0,0), (1,0)\}.$ \end{proof} \item[(c)] Write out $A\times A.$ \begin{proof}[Answer] $A\times A = \{(\pi,\pi), (\pi,e), (\pi, 0), (e,\pi), (e,e), (e,0), (0,\pi), (0,e), (0,0)\}.$ \end{proof} \item[(d)] Write out $B\times B.$ \begin{proof}[Answer] $B\times B = \{(0,0), (0,1), (1,0), (1,1)\}.$ \end{proof} \item[(e)] Write out $A\times \emptyset.$ \begin{proof}[Answer] $A\times\emptyset = \emptyset.$ \end{proof} \item[(f)] Write out $(A\times B)\times B.$ \begin{proof}[Answer] $(A\times B)\times B = \{((\pi,0),0), ((\pi, 1),0), ((e,0),0), ((e,1),0), ((0,0),0), ((0,1),0), ((\pi,0),1), ((\pi, 1),1), ((e,0),1), ((e,1),1), ((0,0),1), ((0,1),1)\}.$ \end{proof} \item[(g)] Write out $A\times(B\times B).$ \begin{proof}[Answer] $A\times(B\times B) = \{(\pi,(0,0)), (\pi,(1,0)), (e,(0,0)), (e,(1,0)), (0,(0,0)), (0,(1,0)), (\pi,(0,1), (\pi,(1,1)), (e,(0,1)), (e,(1,1)), (0,(0,1)), (0,(1,1))\}.$ \end{proof} \item[(h)] Write out $A\times B\times B.$ \begin{proof}[Answer] $A\times B\times B = \{(\pi,0,0), (\pi, 1,0), (e,0,0), (e,1,0), (0,0,0), (0,1,0), (\pi,0,1), (\pi, 1,1), (e,0,1), (e,1,1), (0,0,1), (0,1,1)\}.$ \end{proof} \end{itemize} \end{itemize} \item Hammack 1.3: 2, 8, 10, 16 \begin{itemize} \item[2.] List all subsets of $\{1,2,\emptyset\}.$ \begin{proof}[Answer] The subsets are $\emptyset, \{1\}, \{2\}, \{\emptyset\}, \{1,2\}, \{1,\emptyset\}, \{2,\emptyset\}, \{1,2,\emptyset\}.$ \end{proof} \item[8.] List all subsets of $\{\{0,1\}, \{0,1,\{2\}\}, \{0\}\}.$ \begin{proof}[Answer] The subsets are $\emptyset, \{\{0,1\}\}, \{\{0,1,\{2\}\}\}, \{\{0\}\}, \{\{0,1\},\{0\}\}, \{\{0,1\},\{0,1,\{2\}\}\}, \{\{0\},\{0,1,\{2\}\}\}, \{\{0,1\},\{0\},\{0,1,\{2\}\}\}.$ \end{proof} \item[10.] Write out $\{X\subseteq N : |X| \leq 1\}.$ \begin{proof}[Answer] This set is $\{-1,0,1\}.$ \end{proof} \item[16.] Decide if $\{(x,y) : x^2 - x = 0\} \subseteq \{(x,y) : x-1 = 0\}$ is true or false. \begin{proof}[Answer] False. $(0,0)$ is in the first set but not in the second set, so it cannot be a subset. \end{proof} \end{itemize} \item Hammack 1.4: 6, 14, 16, 18, 20 \begin{itemize} \item[6.] Find $\mathcal P(\{1,2\})\times\mathcal P(\{3\}).$ \begin{proof}[Answer] This is $\{(\emptyset,\emptyset), (\{1\},\emptyset), (\{2\},\emptyset), (\{1,2\},\emptyset), (\emptyset, \{3\}), (\{1\}, \{3\}), (\{2\}, \{3\}), (\{1,2\}, \{3\}).$ \end{proof} \item[14.] Suppose $|A| = m$ and $|B| = n.$ Find $|\mathcal P(\mathcal P(A))|.$ \begin{proof}[Answer] $|\mathcal P(\mathcal P(A))| = 2^{|\mathcal P(A)|} = 2^{2^m}.$ \end{proof} \item[16.] Suppose $|A| = m$ and $|B| = n.$ Find $|\mathcal P(A)\times \mathcal P(B)|.$ \begin{proof}[Answer] This is $|\mathcal P(A)|\cdot|\mathcal P(B)| = 2^{|\mathcal P(A)|}2^{|\mathcal P(B)|} = 2^{nm}$ \end{proof} \item[18.] Suppose $|A| = m$ and $|B| = n.$ Find $|\mathcal P(A\times \mathcal P(B))|.$ \begin{proof}[Answer] By similar techniques, this set has cardinality $2^{m2^n}.$ \end{proof} \item[20.] Suppose $|A| = m$ and $|B| = n.$ Find $|\{X\subseteq\mathcal P(A) : |X|\leq 1\}|.$ \begin{proof}[Answer] This is $\emptyset$ and every one-element subset of $\mathcal P(A),$ so it has cardinality $2^m + 1.$ \end{proof} \end{itemize} \item Hammack 1.6: 2 \begin{itemize} \item[2.] Let $A = \{0,2,4,6,8\}$ and $B = \{1,3,5,7\}$ have universal set $U = \{0,1,2,\ldots,8\}.$ Find: \begin{itemize} \item[(a)] $\bar A = B.$ \item[(b)] $\bar B = A.$ \item[(c)] $A\cap\bar A = \emptyset.$ \item[(d)] $A\cup\bar A = U.$ \item[(e)] $A - \bar A = A.$ \item[(f)] $\bar{A\cup B} = \emptyset.$ \item[(g)] $\bar A \cap \bar B = \emptyset.$ \item[(h)] $\bar{A\cap B} = U.$ \item[(i)] $\bar A \times B = B^2.$ \end{itemize} %\begin{proof}[Answer] %\end{proof} \end{itemize} \item Hammack 1.8: 4, 10, 12, 14 \begin{itemize} \item[4.] For each $n\in \mathbb N,$ let $A_n = \{-2n,0,2n\}.$ \begin{itemize} \item[(a)] $\bigcup_{i\in N} A_i = \{2n:n\in\mathbb N\}$ \item[(b)] $\bigcap_{i\in N} A_i = \{0\}$ \end{itemize} \item[10.] \begin{itemize} \item[(a)] $\bigcup_{i\in [0,1]} [x,1]\times[0,x^2] = \{(x,y)\in \mathbb [0,1]^2 : y \leq x^2\}.$ \item[(b)] $\bigcap_{i\in [0,1]} [x,1]\times[0,x^2] = \{(1,0)\},$ as can be seen from the intersection of the $[0,1]\times[0,0]$ and $[1,1]\times[0,1]$ elements. \end{itemize} \item[12.] If $\bigcap_{\alpha\in I} A_\alpha = \bigcup_{\alpha\in I} A_\alpha,$ what do you think can be said about the relationships between the sets $A_{\alpha}?$ \begin{proof}[Answer] For any $\alpha,\beta \in I,$ $A_\alpha = A_\beta.$ \end{proof} \item[14.] If $J\neq\emptyset$ and $J\subseteq I,$ does it follow that $\bigcap_{\alpha\in I} A_\alpha \subseteq \bigcap_{\alpha\in J} A_\alpha?$ Explain. \begin{proof}[Answer] Yes, this does follow because $\bigcap_{\alpha\in I} A_\alpha = \bigcap_{\alpha\in J} A_\alpha \cap \bigcap_{\beta\in I - J} A_\beta \subseteq \bigcap_{\alpha\in J} A_\alpha.$ \end{proof} \end{itemize} \item Hammack 2.3: 2, 6 \begin{itemize} \item[2.] Convert the following sentence into the form ``{\em If P, then Q}.'' ``For a function to be continuous, it is sufficient that it is differentiable.'' \begin{proof}[Answer] ``If a function is differentiable, that function is continuous.'' \end{proof} \item[6.] Convert the following sentence into the form ``{\em If P, then Q}.'' ``Whenever a surface has only one side, it is non-orientable.'' \begin{proof}[Answer] ``If a surface has one side, that surface is non-orientable.'' \end{proof} \end{itemize} \item Hammack 2.5: 10 \begin{itemize} \item[10.] Suppose the statement $((P\land Q)\lor R) \implies (R\lor S)$ is false. Find the truth values of $P$, $Q,$ $R,$ and $S.$ \begin{proof}[Answer] $P=Q={\rm True}$ and $R=S={\rm False}$ make this statement false. \end{proof} \end{itemize} \item Hammack 2.6: 14 \begin{itemize} \item[14.] Decide whether or not $P\land(Q\lor\lnot Q)$ and $(\lnot P) \implies (Q\land\lnot Q)$ are logically equivalent. \begin{proof}[Answer] These are logically equivalent. $Q\lor ~Q \equiv T$ and $Q\land ~Q \equiv F,$ giving us simplified expressions $P\land T \equiv P$ and $\lnot P \implies F \equiv P,$ so these are logically equivalent expressions. \end{proof} \end{itemize} \item Problems not from the textbook \begin{enumerate} \item Use truth tables to prove that each of the following compound propositions is \emph{not} a tautology. These implication are common logical fallacies (errors in reasoning) since the conclusion does not follow from the hypotheses. \begin{enumerate} \item $[(P\implies Q)\land Q]\implies P$ \begin{proof}[Answer] \begin{tabular}{|c|c|c|c|c|c|} \hline $P$ & $Q$ & $P \implies Q$ & $(P \implies Q)\land Q$ & $[(P\implies Q)\land Q] \implies P$ \\\hline T & T & T & T & T\\\hline T & F & F & F & T\\\hline F & T & T & T & F\\\hline F & F & T & F & T\\\hline \end{tabular} \end{proof} \item $[(P\implies Q)\land\lnot{P}]\implies\lnot{Q}$ \begin{proof}[Answer] \begin{tabular}{|c|c|c|c|c|c|} \hline $P$ & $Q$ & $P \implies Q$ & $(P \implies Q)\land \lnot P$ & $[(P\implies Q)\land \lnot P] \implies \lnot Q$ \\\hline T & T & T & F & T\\\hline T & F & F & F & T\\\hline F & T & T & T & F\\\hline F & F & T & T & T\\\hline \end{tabular} \end{proof} \end{enumerate} \item Use truth tables to prove that each of the following compound propositions is a tautology. These are the four most important ``rules of inference'' in propositional logic. Each rule gives a conclusion that follows from a set of hypotheses and thus give building blocks for correct proofs. \begin{enumerate} \item $[P\land(P\implies Q)]\implies Q$ \begin{proof}[Answer] \begin{tabular}{|c|c|c|c|c|c|} \hline $P$ & $Q$ & $P \implies Q$ & $P\land (P \implies Q)$ & $[P\land (P\implies Q)] \implies Q$ \\\hline T & T & T & T & T\\\hline T & F & F & F & T\\\hline F & T & T & F & T\\\hline F & F & T & F & T\\\hline \end{tabular} \end{proof} \item $[\lnot Q\land(P\implies Q)]\implies\lnot{P} $ \begin{proof}[Answer] \begin{tabular}{|c|c|c|c|c|c|} \hline $P$ & $Q$ & $P \implies Q$ & $(P \implies Q)\land \lnot P$ & $[(P\implies Q)\land \lnot P] \implies \lnot Q$ \\\hline T & T & T & F & T\\\hline T & F & F & F & T\\\hline F & T & T & T & F\\\hline F & F & T & T & T\\\hline \end{tabular} \end{proof} \item $[(P\implies Q)\land(Q\implies R)]\implies(P\implies R)$ \begin{proof}[Answer] Let $(1)$ be $(P\implies Q)\land(Q\implies R).$ \begin{tabular}{|c|c|c|c|c|c|c|c|} \hline $P$ & $Q$ & $R$ & $P \implies Q$ & $Q \implies R$ & $(1)$ & $P \implies R$ & $(1) \implies (P\implies R)$ \\\hline T & T & T & T & T & T & T & T\\\hline T & T & F & T & F & F & F & T\\\hline T & F & T & F & T & F & T & T\\\hline T & F & F & F & T & F & F & T\\\hline F & T & T & T & T & T & T & T\\\hline F & T & F & T & F & F & T & T\\\hline F & F & T & T & T & T & T & T\\\hline F & F & F & T & T & T & T & T\\\hline % to break up lol \end{tabular} \end{proof} \item $[(P\lor Q)\land\lnot{P}]\implies Q$ \begin{proof}[Answer] \begin{tabular}{|c|c|c|c|c|c|} \hline $P$ & $Q$ & $P \lor Q$ & $(P \lor Q)\land \lnot P$ & $[(P\lor Q)\land \lnot P] \implies Q$ \\\hline T & T & T & F & T\\\hline T & F & T & F & T\\\hline F & T & T & T & T\\\hline F & F & F & F & T\\\hline \end{tabular} \end{proof} \end{enumerate} \end{enumerate} \end{itemize} \label{LastPage} \end{document}