\newfam\bbold \def\bb#1{{\fam\bbold #1}} \font\bbten=msbm10 \font\bbsev=msbm7 \font\bbfiv=msbm5 \textfont\bbold=\bbten \scriptfont\bbold=\bbsev \scriptscriptfont\bbold=\bbfiv \font\bigbf=cmbx12 at 24pt \def\answer{\smallskip{\bf Answer.}\par} \def\endproof{\leavevmode\hskip\parfillskip\vrule height 6pt width 6pt depth 0pt{\parfillskip0pt\medskip}} \let\endanswer\endproof \def\section#1{\medskip\vskip0pt plus 1in\goodbreak\vskip 0pt plus -1in% \noindent{\bf #1}} \let\impl\to \def\nmid{\hskip-3pt\not\hskip2.5pt\mid} \def\problem#1{\par\penalty-100\item{#1}} \headline{\vtop{\hbox to \hsize{\strut Math 2106 - Dr. Gupta\hfil Due Thursday 2022-02-17 at 11:59 pm}\hrule height .5pt}} \centerline{\bigbf Homework 5 - Holden Rohrer} \bigskip \noindent{\bf Collaborators:} None \section{Hammack 7: 6, 9, 12} \problem{6.} Suppose $x,y\in\bb R.$ Then $x^3+x^2y = y^2+xy$ if and only if $y = x^2$ or $y = -x.$ $x^2(x+y) = y(x+y).$ \answer $(\Rightarrow)$ Let $x^3 + x^2y = y^2+xy.$ We then have $x^2(x+y) = y(x+y).$ If $y = -x,$ $x+y = 0 \impl x^2(x+y) = y(x+y).$ Otherwise, we can divide by $x+y$ because it is nonzero, giving $y = x^2.$ Therefore, $y=-x$ or $y=x^2.$ $(\Leftarrow)$ Let $y = -x$ or $y = x^2.$ We will first consider the case $y = -x,$ then the case $y = x^2.$ With $y = -x,$ $x^3 + x^2y = x^3 - x^3 = 0 = x^2 - x^2 = y^2 + xy.$ If $y = x^2,$ $x^3 + x^2y = x^3 + x^4 = x^3 + x^4 = xy + y^2.$ \endanswer \problem{9.} Suppose $a\in\bb Z.$ Prove that $14\mid a$ if and only if $7\mid a$ and $2\mid a.$ \answer $(\Rightarrow)$ Let $14\mid a.$ This gives $a = 14k$ for some integer $k.$ $a = 2(7k),$ so with $7k\in\bb Z,$ we get $2\mid a.$ Similarly, $a = 7(2k),$ so with $2k\in\bb Z,$ we get $7\mid a.$ $(\Leftarrow)$ Let $7\mid a$ and $2\mid a.$ These give $a = 7j$ for some $j$ and $a = 2k$ for some integers $j$ and $k.$ A product of odd number $7$ and odd number $j$ cannot be even (and $a$ is even because $2\mid a$), so $j$ must be even. Thus, there exists $l\in\bb Z$ such that $j = 2l.$ This gives $a = 7(2l) = 14l \to 14\mid a.$ \endanswer \problem{12.} There exist a positive real number $x$ for which $x^2 < \sqrt x.$ \answer Observe that $x = 1/4$ gives $x^2 = 1/16$ and $\sqrt x = 1/2,$ so $1/16 < 1/2.$ \endanswer \section{Hammack 8: 12, 22, 28} \problem{12.} If $A,$ $B,$ and $C$ are sets, then $A-(B\cap C) = (A-B)\cup(A-C).$ \answer $(\subseteq)$ Let $x\in A - (B\cap C).$ This gives us $x\in A$ and $x\not\in B\cap C.$ We get $x\not\in B$ or $x\not\in C.$ WLOG, let $x\not\in B.$ $x\in A$ and $x\not\in B,$ so $x\in A-B,$ so $x\in (A-B)\cup(A-C).$ $(\supseteq)$ Let $x\in (A-B)\cup (A-C).$ This gives $x\in A-B$ or $x\in A-C.$ WLOG, let $x\in A-B.$ Therefore, $x\in A$ and $x\not\in B.$ This implies $x\not\in B\cap C,$ so $x\in A-(B\cap C).$ Since we have $A-(B\cap C) \subseteq (A-B)\cup(A-C)$ and $(A-B)\cup(A-C) \subseteq A-(B\cap C),$ we obtain $$A-(B\cap C) = (A-B)\cup(A-C).$$ \endanswer \problem{22.} Let $A$ and $B$ be sets. Prove that $A\subseteq B$ if and only if $A\cap B = A.$ \answer $(\Rightarrow)$ Let $A\subseteq B.$ Let $x\in A.$ By subset, $x\in B.$ And if and only if $x\in A$ and $x\in B,$ $x\in A\cap B,$ so $A = A\cap B.$ $(\Leftarrow)$ Let $A\cap B = A.$ This implies $A\subseteq A\cap B,$ or $x\in A\impl x\in A\cap B\impl x\in B.$ $x\in A\impl x\in B$ is the definition of $A\subseteq B.$ \endanswer \problem{28.} Prove $\{12a+25b:a,b\in\bb Z\} = \bb Z.$ \answer Let $A = \{12a+25b:a,b\in\bb Z\}.$ If $x\in A,$ $x\in\bb Z$ because the integers are closed under addition and mulitplication. If $x\in\bb Z,$ let $b = x$ and $a = -2x,$ giving us $12(-2x) + 25x = x\in A.$ Therefore, since $A\subseteq\bb Z$ and $\bb Z\subseteq A,$ these two sets are equal. \endanswer \section{Hammack 9: 6, 28, 30, 34} Prove or disprove each of the following statements. \problem{6.} If $A,$ $B,$ $C,$ and $D$ are sets, then $(A\times B)\cup(C\times D) = (A\cup C)\times(B\cup D).$ \answer {\bf Disproof.} Let $A = B = \{1\}$ and $C = D = \{2\}.$ The set $A\times B = \{(1,1)\}.$ The set $C\times D = \{(2,2)\}.$ And the set $A\cup C = B\cup D = \{1,2\}.$ $$(A\times B)\cup(C\times D) = \{(1,1),(2,2)\} \neq \{(1,1),(1,2),(2,1),(2,2)\} = (A\cup C)\times(B\cup D).$$ \endanswer \problem{28.} Suppose $a,b\in\bb Z.$ If $a\mid b$ and $b\mid a,$ then $a = b.$ \answer {\bf Disproof.} $2\mid -2$ and $-2\mid 2,$ but $-2\neq 2.$ \endanswer \problem{30.} There exist integers $a$ and $b$ for which $42a + 7b = 1.$ \answer {\bf Disproof.} Let $a,b\in\bb Z.$ For the sake of contradiction, assume $42a + 7b = 1.$ Dividing by 7, $6a + b = 1/7.$ By closure of the integers, $6a+b\in\bb Z,$ and $1/7\not\in\bb Z,$ giving a contradiction. \endanswer \problem{34.} If $X\subseteq A\cup B,$ then $X\subseteq A$ or $X\subseteq B.$ \answer {\bf Disproof.} Let $A = \{1\},$ $B = \{2\},$ and $X = A\cup B.$ Immediately, $X\subseteq A\cup B.$ And then, $2\in X,$ but $2\not\in A,$ so $X\not\subseteq A.$ Also, $1\in X,$ but $1\not\in B,$ so $X\not\subseteq B.$ \endanswer \section{Problem not from the textbok} \problem{1.} Let $A,$ $B,$ and $C$ be arbitrary sets. Prove that if $A-C\not\subseteq A-B,$ then $B\not\subseteq C.$ \answer We will prove this by contrapositive. Let $B\subseteq C.$ We will show that $A-C\subseteq A-B.$ If $x\in B,$ $x\in C,$ so by contrapositive, if $x\not\in C,$ $x\not\in B.$ Let $y\in A-C.$ By definition of setminus, $y\in A$ and $y\not\in C.$ As established, this implies $y\not\in B.$ Therefore, with $y\in A$ and $y\not\in B,$ $y\in A-B,$ so $A-C\subseteq A-B.$ \endanswer \bye