\newfam\bbold \def\bb#1{{\fam\bbold #1}} \font\bbten=msbm10 \font\bbsev=msbm7 \font\bbfiv=msbm5 \textfont\bbold=\bbten \scriptfont\bbold=\bbsev \scriptscriptfont\bbold=\bbfiv \newcount\indentlevel \newcount\itno \def\reset{\itno=1}\reset \def\afterstartlist{\advance\leftskip by .5in\par\advance\leftskip by -.5in} \def\startlist{\par\advance\indentlevel by 1\advance\leftskip by .5in\reset \aftergroup\afterstartlist} \def\alph#1{\ifcase #1\or a\or b\or c\or d\or e\or f\or g\or h\or i\or j\or k\or l\or m\or n\or o\or p\or q\or r\or s\or t\or u\or v\or w\or x\or y\or z\fi} \def\li#1\par{\medskip\penalty-100\item{\ifcase\indentlevel \number\itno.\or \alph\itno)\else (\number\itno)\fi }% #1\smallskip\advance\itno by 1\relax} \def\ul{\bgroup\def\li##1\par{\item{$\bullet$} ##1\par}} \let\endul\egroup \def\hline{\noalign{\hrule}} \let\impl\rightarrow \newskip\tableskip \tableskip=10pt plus 10pt \def\endproof{\leavevmode\quad\vrule height 6pt width 6pt depth 0pt\hskip\parfillskip\hbox{}{\parfillskip0pt\medskip}} \def\oldcomma{,} \catcode`\,=13 \def,{% \ifmmode \oldcomma\mskip\medmuskip\discretionary{}{}{}% \else \oldcomma \fi } \li Determine whether these statements are true or false. {\startlist \li $\emptyset \in \emptyset.$ False. No item is in the empty set. \li $\emptyset \subset \emptyset.$ False. These two sets are equal, so they can't be a proper subset. \li $\emptyset \subseteq \emptyset.$ True. These two sets are equal, so they form a subset. \li $\{\emptyset\} \in \{\emptyset\}.$ False. This isn't an element. \li $\{\emptyset\} \in \{\emptyset, \{\emptyset\}\}.$ True. This is an element. \li $\{\{\emptyset\}\} \subseteq \{\{\emptyset\}, \{\emptyset\}\}.$ True. These two sets are equal to each other. } \li Determine the cardinality of the following sets. {\startlist \li $\emptyset$ 0. \li $\{U\}$ 1. \li $\{a,\{b\},a,b\}$ 3. \li $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$ 3. } \li State whether the following is True or False and explain your reasoning for full credit: {\startlist \li The cardinality of every set is always less than the cardinality of its powerset. True. If $a$ is an element of a set, $\{a\}$ is an element of its powerset, and $\emptyset$ is always in the powerset, so the size of the powerset is at least $n+1$ if the cardinality of the set is $n.$ \li The Cartesian product of two sets is the null set if and only if both sets are also the null set. False. $\emptyset\times A$ is always the null set, even if $A$ is non-empty. \li Given 3 sets $A,$ $B,$ and $C,$ $|A\cup B\cup C| = |A| + |B| + |C| - |A\cap B| - |A\cap B| - |B\cap C|.$ False. Let $A = B = C = \{\emptyset\}.$ $|A\cup B\cup C| = 1,$ but the right side evaluates to 0. } \li Let $A = \{a,b,c,d,e\},$ $B = \{a,b,c,d,e,f,g,h\},$ and $U$ represent a universal set of $\{a,b,c,d,e,f,g,h,i,j,k,l\}.$ Find: {\startlist \li $A\cup B\cup \emptyset.$ $\{a,b,c,d,e,f,g,h\}.$ \li $U\cap B\cap A.$ $\{a,b,c,d,e\}.$ \li $A - B$ $\emptyset.$ \li $B - A$ $\{f,g,h\}.$ \li $A\times B$ $\{(a,a), (a,b), (a,c), (a,d), (a,e), (a,f), (a,g), (a,h), (b,a), (b,b), (b,c), (b,d), (b,e), (b,f), (b,g), (b,h), (c,a), (c,b), (c,c), (c,d), (c,e), (c,f), (c,g), (c,h), (d,a), (d,b), (d,c), (d,d), (d,e), (d,f), (d,g), (d,h), (e,a), (e,b), (e,c), (e,d), (e,e), (e,f), (e,g), (e,h)\}.$ \li $B\times A$ $\{(a,a), (b,a), (c,a), (d,a), (e,a), (f,a), (g,a), (h,a), (a,b), (b,b), (c,b), (d,b), (e,b), (f,b), (g,b), (h,b), (a,c), (b,c), (c,c), (d,c), (e,c), (f,c), (g,c), (h,c), (a,d), (b,d), (c,d), (d,d), (e,d), (f,d), (g,d), (h,d), (a,e), (b,e), (c,e), (d,e), (e,e), (f,e), (g,e), (h,e)\}.$ \li $A^c$ $\{f,g,h,i,j,k,l\}.$ \li ${\cal P}(A)$ $\{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,e\}, \{b,c\}, \{b,d\}, \{b,e\}, \{c,d\}, \{c,e\}, \{d,e\}, \{a,b,c\}, \{a,b,d\}, \{a,b,e\}, \{a,c,d\}, \{a,c,e\}, \{a,d,e\}, \{b,c,d\}, \{b,c,e\}, \{b,d,e\}, \{c,d,e\}, \{a,b,c,d\}, \{a,b,c,e\}, \{a,b,d,e\}, \{a,c,d,e\}, \{b,c,d,e\}, \{a,b,c,d,e\}\}.$ } \li Prove or disprove the following statements, for all sets A, B, and C. {\startlist \li $\overline{A\cup B} = \overline A \cap \overline B.$ The complement notation requires a universal set $U,$ which is implicitly defined here. We start from $\overline{A\cup B}.$ \smallskip \vskip0pt plus 1in\goodbreak\vskip 0pt plus -1in \halign{\vrule\strut#\tabskip\tableskip&#\hfil&#\hfil&#\tabskip0pt&#\vrule\cr\hline &$\{x|x\in \overline{A\cup B}\}$&Set Builder Notation&&\cr &$\{x|x\in U\land x\not\in A\cup B\}$&Def'n of complement&&\cr &$\{x|x\in U\land \lnot(x\in A\lor x\in B)\}$&Def'n of union&&\cr &$\{x|x\in U\land x\not\in A\land x\not\in B)\}$&DeMorgan's Law&&\cr &$\{x|x\in U\land x\in U\land x\not\in A\land x\not\in B\}$&Idempotent Law&&\cr &$\{x|x\in U\land x\not\in A\land x\in U\land x\not\in B\}$&Commutative Law&&\cr &$\{x|(x\in U\land x\not\in A)\land(x\in U\land x\not\in B)\}$&Associative Law&&\cr &$\{x|x\in\overline A\land(x\in U\land x\not\in B)\}$&Def'n of complement&&\cr &$\{x|x\in\overline A\land x\in\overline B\}$&Def'n of complement&&\cr &$\{x|x\in\overline A\cap \overline B\}$&Def'n of intersection&&\cr &$\overline A\cap \overline B$&Def'n of set builder&&\cr \hline } \smallskip \iffalse To show equality, we will show $\overline{A\cup B} \subseteq \overline A \cap \overline B$ and $\overline{A\cup B} \supseteq \overline A \cap \overline B.$ $(\subseteq)$ \smallskip Let $x\in \overline{A \cup B}.$ $x\in U$ and $x\not\in A \cup B,$ so $x\not\in A$ and $x\not\in B$ (contrapositively, $x\in A\lor x\in B \to x\in A \cup B.$) If $x\in U$ and $x\not\in A,$ $x\in\overline A,$ and similarly, $x\not\in B,$ so $x\in\overline B.$ Therefore, $x\in \overline A \cap \overline B.$ $(\supseteq)$ \smallskip Let $x\in \overline A \cap \overline B.$ This implies $x\in\overline A$ and $x\in\overline B.$ $x\in\overline A$ only if $x\in U$ and $x\not\in A.$ Similarly, $x\in\overline B$ implies $x\not\in B.$ Together, this gives $x\not\in A \cup B.$ Therefore, $x\in \overline{A\cup B}$ because $x\in U.$ \smallskip We have now shown that these sets are equal. \fi \li $A \cup (B \cup A) = A.$ False. Let $A = \emptyset$ and $B = \{\emptyset\}.$ The set $A \cup B = \{\emptyset\},$ so $A \cup (B \cup A) = \{\emptyset\} \neq A = \emptyset.$ } \bye