print "Weekly Homework 9\n" pi = 4*a(1) epsilon = 8.85 * 10^(-12) epercoul = 6.24 * 10^18 # Conductivity constants ( resistitvity = 1/sigma) sigmairon = 1*10^7 sigmacopper = 6*10^7 sigmasilver = 6.2*10^7 sigmagold = 4.1*10^7 sigmaaluminum = 3.5*10^7 sigmatungsten = 1.8*10^7 sigmanichrome = 6.7*10^5 sigmacarbon = 2.9*10^4 print "Question 1\n" #params i = 1.9/1000 # A diam = 5/1000 # m r = diam/2 "Protons Per Second " i*epercoul # i = \int_0^R J_edge (r/R) 2\pi r dr # = J_edge/R [ 2\pi r^3 / 3 ]_0^R # = 2\pi J_edge R^2/3 jedge = 3*i/(2*pi*r^2) "J_edge (A/m^2) " jedge print "Question 2\n" # Equilibrium: eta/2epsilon + EF_I2 = EF_I1 # EF_I = V/L = IR/L = I(L/sigma/A)/L = I/(sigma*A) # eta = 2epsilon * ( I/(sigma1*A)-I/(sigma2*A) ) # Corrections from pearson: apparently it should be eta/epsilon, and the # sign was opposite, so correct is print "eta = epsilon * ( I/(sigma2*A)-I/(sigma1*A))\n" #params diam = 1/1000 # m i = 3 # A a = pi*r^2 # m^2 r = diam/2 # m "Charge on the boundary " # eta * a epsilon * i * (1/(sigmairon*a) - 1/(sigmacopper*a)) * a print "Question 3\n" #params diam = .5 # mm i = 20 # mA diam = diam/1000 # m r = diam/2 # m i = i/1000 # A a = pi*r^2 j = i/a # j = ef*sigma ef = j/sigmasilver "Electric Field (V/m) " ef "Electron drift speed (m/s) " # idk lol ve = 5.8 * 10^28 # number/m^3 ie = i*epercoul # number/s ie/a/ve print "Question 4\n" diam = 1 # mm diam = diam/1000 # m r = diam/2 a = pi*r^2 # efnichrome = efaluminum # jnichrome/sigmanichrome = jaluminum/sigmaaluminum # i/pi*(diam_nichrome/2)^2/sigmanichrome = i/a/sigmaaluminum # pi*(diam_nichrome/2)^2*sigmanichrome = a*sigmaaluminum "Diameter of nichrome (m) " 2*sqrt(a*sigmaaluminum/sigmanichrome/pi) print "Question 5\n" #params l = 10 # cm innerdiam = 2.8 # mm outerdiam = 3 # mm v = 3 # V l = l/100 # m innerdiam = innerdiam/1000 # m innerr = innerdiam/2 outerdiam = outerdiam/1000 # m outerr = outerdiam/2 a = pi*outerr^2 - pi*innerr^2 ef = v/l j = ef*sigmanichrome i = j*a "Current (A) " i print "Question 6\n" print "60W means higher resistance, so it has a higher voltage drop\n" print "and takes more energy\n" v = 120 # V w1 = 60 # W (wattage of lightbulb 1 @ 120V) # w1 = i*v = v*v/r1 r1 = v^2/w1 r1 w2 = 100 # W r2 = v^2/w2 i = v/(r1+r2) print "Power by the first bulb (W) " i^2*r1 print "Power by the second bulb (W) " i^2*r2 print "Question 7\n" #params r = 70 # Ohm v = 9 # V i = v/r "Magnitude of Current (A) " i print "Direction is left to right (positive to negative)\n" print "Question 8\n" #params w = 1100 # W v = 120 # V "Resistance (Ohm) " r = v^2/w r "Current (A) " v/r print "Question 9\n" #params m = 1 # g aluminum p = 8 # W v = 1.5 # V m = m/1000 # kg r = v^2/p # Ohm densityaluminum = 2.7 # g/cm^3 densityaluminum = densityaluminum*1000 #kg/m^3 vol = m/densityaluminum # m^3 rhoaluminum = 1/sigmaaluminum # Ohm*m # R = rhoaluminum * l / A = rhoaluminum * l / (vol/l) = # rhoaluminum*l^2 / vol l = sqrt(r/rhoaluminum*vol) # m # Cross-sectional area a = vol/l # m^2 "Diameter (mm) " 2*sqrt(a/pi) * 1000 "Length (m) " l