print "Weekly Practice 12\n" qelem = 1.6*10^(-19) # C pi = 4*a(1) mu0 = 4*pi*10^(-7) g = 9.81 # m/s^2 scale = 40 print "#1\n" # magnetic field in this problem is |B| @ theta ccw from +x. # we find the i and j components. i\times j = k. j\times i = -k. #params v1 = 1.25 * 10^6 #i m/s f1 = 1.64 * 10^(-16) #k N v2 = 2.49 * 10^6 #j m/s f2 = -4.04* 10^(-16) #k N # v1*bj*q = f1 bj = f1/v1/qelem # v2*bi*q = -f2 bi = -f2/v2/qelem print "Magnitude (T)\n" sqrt((bi*10^16)^2 + (bj*10^16)^2)*10^(-16) print "Angle ccw from +x axis (deg)\n" a(bj/bi)*180/pi scale = 40 print "#2\n" #params v = 4*10^4 # m/s b = 5 # mT m = 1.67*10^(-27) # kg b = b/1000 a = (b*qelem*v/m) r = v^2/a # r = vm/bq print "Diameter (m)\n" 2*r print "#3\n" #params mf = 27 # mT v = 5.5 * 10^6 # m/s thdeg = 30 th = thdeg*pi/180 mf = mf/1000 # T vx = v*c(th) melec = 9.1*10^(-31) r = vx*melec/(mf*qelem) print "Radius (m)\n" r c = 2*pi*r t = c/vx print "Pitch (m)\n" t*v*s(th) print "#4\n" #params l = 52 # mass density - g/m d = 4 # cm d = d/100 # m l = l/1000 # kg/m w = l*g # N/m # Up and down cancel out from the two base wires, so we get an mf of # 2*mu0*I*s(60deg)/(2pi*d) and a force (per meter) of I*mf = w # i^2 * 2*mu0*s(60*pi/180)/(2*pi*d) = w i = sqrt(w/(2*mu0*s(60*pi/180)/(2*pi*d))) print "Current (A)\n" i print "#5\n" #params s = 5.1 # cm i = 470 # mA b = 1.7 # T thdeg = 30 # We use magnetic moment here s = s/100 # m i = i/1000 # A th = thdeg*pi/180 print "Torque Magnitude (Nm)\n" s^2*s(th)*b*i print "#6\n" #params k = 12 # N/m - spring constant d = .7 # cm b = .5 # T l = 20 # cm d = d/100 # m l = l/100 # m f = 2*k*d # N (two springs, double the force) # i*l*b = f i = f/(l*b) print "Current (A)\n" i print "#7\n" #params m = 4 # kg s = 5.5 # m i = 25 # A thdeg = 25 th = thdeg*pi/180 w = m*g t = w*s/2 a = s^2 # a*i*b = t b = t/(a*i) # what happened to the angle lmao. this is right (??) print "Magnetic field (T)\n" b print "#8\n" #params dv = .02 # V l = 10 # cm v = 5 # m/s l = l/100 # m ef = dv/l # some stackexchange article said so # ef = v*b print "Magnetic field into the page (T)\n" ef/v print "#9\n" #params b = .45 # T v = .5 # m/s ohm = 2 # Ohm d = 10 # cm d = d/100 # m i = v*d*b/ohm # IMPORTANT !!! p = i^2*ohm # f*v = p f = p/v print "Pushing force (N)\n" f print "Power (W)\n" p print "Current - induced counterclockwise (A)\n" i print "Power dissipated by resistor (W)\n" p