{\bf\noindent 10.} $(0, y_1)$, $(1, y_2)$, and $(2, y_3)$ lie on the same line if $(2, y_3) = k(1, y_2 - y_1) + (0, y_1) = (k, ky_2 - (k-1)y_1) \to y_3 = 2y_2 - y_1.$ {\bf\noindent 11.} For $a = 2$ and $a = -2,$ the columns are linearly dependent, and there is a line of solutions. {\bf\noindent 15.} "Lines." "2." "the column vectors." {\bf\noindent 22.} If $(a,b)$ is a multiple of $(c,d),$ $c/a = d/b \to c/d = a/b,$ so $(a, c)$ is a multiple of $(b, d)$. {\bf\noindent 5.} $0$ gives no solutions. $20$ gives infinitely many solutions. These solutions include $(4, -2)$ and $(0, 5).$ {\bf\noindent 8.} $k=3,$ $k=0,$ and $k=-3$ cause elimination to break down. $k=3$ makes the system inconsistent, so it has 0 solutions, $k=-3$ causes infinite solutions, and $k=0$ is consistent with 1 solution but requires a row exchange. {\bf\noindent 12.} If $d=10,$ a row exchange is required, giving a triangular system $$\pmatrix{2&5&1\cr 0&1&-1\cr 0&0&-1}\pmatrix{x\cr y\cr z} = \pmatrix{0\cr 3\cr 2}$$ {\bf\noindent 19.} "Combination." $2x - y = 0$ cannot be solved. {\bf\noindent 28.} {\it (a)} False. If the second row doesn't start with a zero coefficient, then a multiple of row 1 will be (indirectly) subtracted from row 3 when row 2 is subtracted from row 3. {\it (b)} False. After eliminating the $u$ column from the third row, a $v$ ``residue'' might remain. {\it (c)} True. The third row is already fully ``solved'' for back-substitution. {\bf\noindent 22.} {\it (a)} $$\pmatrix{1&0&0\cr -5&1&0\cr 0&0&1\cr}$$ {\it (b)} $$\pmatrix{1&0&0\cr 0&1&0\cr 0&-7&1\cr}$$ {\it (c)} $$\pmatrix{0&1&0\cr 0&0&1\cr 1&0&0\cr}$$ {\bf\noindent 27.} $R_{31}$ should add 7 times row 1 to row 3. $E_31R_31 = I_3.$ {\bf\noindent 29.} {\it (a)} $$E_{13} = \pmatrix{1&0&1\cr 0&1&0\cr 0&0&1}$$ {\it (b)} $$\pmatrix{1&0&1\cr 0&1&0\cr 1&0&1}$$ {\it (c)} $$\pmatrix{2&0&1\cr 0&1&0\cr 1&0&1}$$ {\bf\noindent 42.} {\it (a)} True. {\it (b)} False, they just have to be $m\times n$ and $n\times m.$ {\it (c)} True, but they don't have the same dimensions. {\it (d)} False. This is only true if $B$ is invertible. {\bf\noindent 51.} $AX = I_3.$ {\bf\noindent 6.} $$E^2 = \pmatrix{1&0\cr12&1}$$ $$E^8 = \pmatrix{1&0\cr48&1}$$ $$E^{-1} = \pmatrix{1&0\cr-6&1}$$ {\bf\noindent 9.} {\it (a)} If none of $d_1,$ $d_2,$ or $d_3$ are zero, the product is nonsingular. % Prove it {\it (b)} Solving this first system, $c = b,$ by substitution. Then we have $$Dd = c \to d = \pmatrix{0\cr0\cr 1/d_3}$$ and $$Vx = d \to \pmatrix{1 & -1 & 0\cr 0 & 1 & -1 \cr 0 & 0 & 1}\pmatrix{x_1\cr x_2\cr x_3} = d \to x_3 = x_2 = x_1 = 1/d_3.$$ {\bf\noindent 19.} In the second matrix, $c=0$ requires a row exchange, and $c=3$ would make the matrix singular. In the first matrix, it is singular if $3b = 40-10a.$ And it requires a row exchange if $a=4$ and $b\neq 0.$ {\bf\noindent 31.} $$\pmatrix{1&1&0\cr 1&2&1\cr 0&1&2} = \pmatrix{1&0&0\cr 1&1&0\cr 0&1&1} \pmatrix{1&1&0\cr 0&1&1\cr 0&0&1} = \pmatrix{1&0&0\cr 1&1&0\cr 0&1&1}\pmatrix{1&0&0\cr0&1&0\cr0&0&1}\pmatrix{1&1&0\cr 0&1&1\cr 0&0&1} $$ $$\pmatrix{a&a&0\cr a&a+b&b\cr 0&b&b+c} = \pmatrix{1&0&0\cr1&1&0\cr0&1&1}\pmatrix{a&a&0\cr 0&b&b\cr 0&0&c} = \pmatrix{1&0&0\cr1&1&0\cr0&1&1}\pmatrix{a&0&0\cr0&b&0\cr0&0&c}\pmatrix{1&1&0\cr 0&1&1\cr 0&0&1} $$ {\bf\noindent 32.} $$Lc = b \to \pmatrix{1&0\cr4&1}c = \pmatrix{2\cr 11} \to c = \pmatrix{2\cr 3}.$$ $$Ux = c \to \pmatrix{2&4\cr0&1}x = \pmatrix{2\cr 3} \to x = \pmatrix{-5\cr 3}.$$ $$A = LU = \pmatrix{1&0\cr4&1}\pmatrix{2&4\cr0&1} = \pmatrix{2&4\cr8&17}.$$ $$\pmatrix{2&4\cr8&17}x = \pmatrix{2\cr 11} \to \pmatrix{2&4\cr0&1}x = \underline{\pmatrix{2\cr3}} \to x = \pmatrix{-5\cr 3}$$ \bye