\def\bmatrix#1{\left[\matrix{#1}\right]} \def\fr#1#2{{#1\over #2}} \def\proj{\mathop{\rm proj}} {\bf Section 3.3} \noindent{\bf 6.} $$A = \bmatrix{1&1\cr 1&-1\cr -2&4}.$$ $$A^TA = \bmatrix{6&-8\cr -8&18}.$$ $$P = A(A^TA)^{-1}A^T = \bmatrix{1&1\cr 1&-1\cr -2&4} \fr1{22}\bmatrix{9&4\cr4&3}\bmatrix{1&1&-2\cr1&-1&4} = \fr1{22}\bmatrix{20&6&2\cr 6&4&-6\cr2&-6&20}.$$ $$p = Pb = \fr1{22}\bmatrix{20&6&2\cr 6&4&-6\cr2&-6&20}\bmatrix{1\cr2\cr7} = \fr1{22}\bmatrix{46\cr-28\cr130}$$ With $b = p + q,$ and $p$ known, $q = b-p,$ and $q$ is in the left null space of $A$ by the definition of orthogonality with the column space which contains $p.$ \noindent{\bf 7.} $$A = \bmatrix{1&1\cr0&1\cr1&-1}$$ $$A^TA = \bmatrix{2&0\cr0&3}$$ $$A(A^TA)^{-1}A^T = \bmatrix{1&1\cr0&1\cr1&-1}\bmatrix{1/2&0\cr0&1/3}\bmatrix{1&0&1\cr1&1&-1}.$$ \noindent{\bf 12.} {\it (a)} $$\left\{\pmatrix{1\cr-1\cr0\cr0}, \pmatrix{0\cr1\cr0\cr-1}\right\}$$ is a basis for the orthogonal complement. {\it (b)} If $v_1$ and $v_2$ are the two given basis vectors for ${\bf V},$ they are orthogonal and $v_1/\sqrt3$ and $v_2$ form an orthonormal basis, so $$Q = \fr1{\sqrt3}\bmatrix{1&0\cr1&0\cr0&\sqrt3\cr1&0}$$ $$P = QQ^T = \bmatrix{1/3&1/3&0&1/3\cr1/3&1/3&0&1/3\cr0&0&1&0\cr1/3&1/3&0&1/3}$$ {\it (c)} This is the zero vector because an orthogonal vector $b$ has no parallel component to the plane, and any parallel part in ${\bf V}$ would give a longer distance. {\bf Section 3.4} \noindent{\bf 16.} $$A = \bmatrix{1&1\cr2&3\cr2&1} = \bmatrix{1/3&0\cr 2/3&1/\sqrt2\cr2/3&-1/\sqrt2}\bmatrix{3&3\cr0&\sqrt2} = QR.$$ Generally, $A$ is an $m\times n$ matrix, $Q$ is an $m\times r$ (where $r$ is the rank of $A$) matrix, and $R$ is an $r\times r$ matrix. \noindent{\bf 17.} $$Pb = QQ^Tb = \bmatrix{1/9&2/9&2/9\cr 2/9&17/18&-1/18\cr 2/9&-1/18&17/18}\bmatrix{1\cr1\cr1} = \bmatrix{5/9\cr10/9\cr10/9}$$ {\bf Section 3.5} \noindent{\bf 12.} $$y = F_8c.$$ $$y' = F_4c'.$$ $$(y')' = F_2(c')'.$$ $$((y')')' = F_1((c')')' = 1.$$ $$((y')')'' = F_1((c')')'' = 1.$$ $$(y')' = \bmatrix{((y')')' + w_2^0((y')')''\cr ((y')')' - w_2^0((y')')''} = \bmatrix{2\cr0}.$$ $$((y')'')' = F_1((c')'')' = 1.$$ $$((y')'')'' = F_1((c')'')'' = 1.$$ $$(y')'' = \bmatrix{2\cr 0}.$$ $$y' = \bmatrix{4\cr0\cr0\cr0}$$ $$y'' = F_4c'' = \underline 0.$$ $$y = \bmatrix{4\cr0\cr0\cr0\cr4\cr0\cr0\cr0}.$$ The same computation with $(0,1,0,1,0,1,0,1)$ has $y'$ and $y''$ switch values, giving $$y = \bmatrix{4\cr0\cr0\cr0\cr-4\cr0\cr0\cr0}.$$ \bye