\newfam\rsfs \newfam\bbold \def\scr#1{{\fam\rsfs #1}} \def\bb#1{{\fam\bbold #1}} \let\oldcal\cal \def\cal#1{{\oldcal #1}} \font\rsfsten=rsfs10 \font\rsfssev=rsfs7 \font\rsfsfiv=rsfs5 \textfont\rsfs=\rsfsten \scriptfont\rsfs=\rsfssev \scriptscriptfont\rsfs=\rsfsfiv \font\bbten=msbm10 \font\bbsev=msbm7 \font\bbfiv=msbm5 \textfont\bbold=\bbten \scriptfont\bbold=\bbsev \scriptscriptfont\bbold=\bbfiv \def\Pr{\bb P} \def\E{\bb E} \newcount\qnum \def\q{\afterassignment\qq\qnum=} \def\qq{\qqq{\number\qnum}} \def\qqq#1{\bigskip\goodbreak\noindent{\bf#1)}\smallskip} \def\fr#1#2{{#1\over #2}} \def\var{\mathop{\rm var}\nolimits} \q1 Let $A \setminus B := \{x \in A : x\not\in B\}.$ $(A\setminus B) \cap B = \empty,$ by definition, so they are disjoint sets. Therefore, if $x \in A \land x \in B,$ $x\not\in A \setminus B$ and $x\not\in B\setminus A,$ and also the two setminuses do not intersect with eachother, making them disjoint sets. $$\Pr(A\cup B) = \Pr((A\setminus B)\cup(A\cap B)\cup(B\setminus A)) = \Pr(A\setminus B) + \Pr(A\cap B) + \Pr(B\setminus A) + \Pr(A\cap B) - \Pr(A\cap B)$$$$ = \Pr((A\setminus B)\cup(A\cap B)) + \Pr((B\setminus A)\cup(A\cap B)) - \Pr(A\cap B) = \Pr(A) + \Pr(B) - \Pr(A\cap B).$$ \q2 $$\Pr(A\cap B) + \Pr(A\cap B^C) = \Pr(A\cap B) + \Pr(\{x\in A:x\not\in B\}) = \Pr((A\cap B) \cup (A\setminus B)) = \Pr(A),$$ by disjointedness and set arithmetic. \q3 $$\Pr(A_1 \cup (A_2^C \cap A_3^C)) = \Pr(A_1) + \Pr(A_2^C \cap A_3^C) - \Pr(A_1\cap A_2^C\cap A_3^C) = 1/6 + \Pr(A_2^C)\Pr(A_3^C) - \Pr(A_1)\Pr(A_2^C)\Pr(A_3^C)$$$$ = 1/6 + 25/36 - 25/216 = 161/216.$$ \q4 \noindent{\it (a)} Pairwise exclusive implies mutually exclusive: $$A_1\cap A_2\cap A_3 = A_1\cap (A_2\cap A_3) = A_1\cap\empty = \empty,$$ and see {\it (b)} for a description of why these probabilities are therefore impossible. \noindent{\it (b)} No, if they were, all three sets would be disjoint, giving $$\Pr(A_1\cup A_2\cup A_3) = \Pr(A_1) + \Pr(A_2) + \Pr(A_3) = 1/2 + 1/4 + 1/3 > 1,$$ violating a property of the probability function ($0 \leq \Pr X \leq 1$) \q5 \noindent{\it (a)} $$\E(Y) = \E(2 - 3X) = \E(2) - 3\E(X) = 2 - 3*2 = -4.$$ \noindent{\it (b)} $$\var Y = \E(Y^2) - \E(Y)^2 = \E((2-3X)^2) - 16 = \E(4 - 12X + 9X^2) - 16 = 4 - 12\E(X) + 9\E(X^2) - 16 = 18,$$ by linearity of expectation. \q6 $$P_X(k) = \left\{\vbox{\halign{$#$\hfil&\hskip3em $#$\hfil\cr{\lambda^k e^{-\lambda}\over k!}&k \geq 0\cr 0&{\rm otherwise}\cr}}\right..$$ \noindent{\it (a)} $$\E(e^{tX}) = \sum_{x=0}^\infty e^{tx}P_X(x) = \sum_{x=0}^\infty {e^{tx}\lambda^xe^{-\lambda}\over x!} = e^{-\lambda}\sum_{x=0}^\infty {e^{(t+\ln \lambda)x}\over x!} = e^{-\lambda}\sum_{x=0}^\infty {(\lambda e^t)^x\over x!} = e^{-\lambda}e^{\lambda e^t}, $$ by definition of the $e^ax$ Taylor series. \noindent{\it (b)} The third-order moment $\E(X^3)$ will be the third derivative of the mgf $\E(e^{tX}).$ at $t=0,$ so we get $$e^{-\lambda}(\lambda e^t)^3 e^{\lambda e^t} = \lambda^3.$$ \q7 \noindent{\it (a)} The pmf is $1/16$ for $X = 0$ and $X=4,$ $4/16$ for $X=1$ and $X=3,$ and $6/16$ for $X=2,$ or in other terms, $P_X(k) = {{4\choose k}\over 2^4}.$ \noindent{\it (b)} This can be immediately computed as $$\Pr(\hbox{$X$ is odd}) = \Pr(X = 1) + \Pr(X = 3) = 1/2,$$ by disjointedness of those events. \q8 Chebyshev's inequality gives us $$\Pr(|X-\E X| < .1) \geq 1-{\sigma^2\over .1^2} \geq .95$$ The maximum value of $\sigma = \var X$ is $.05*.1^2 = \sigma^2 \to \sigma = .1\sqrt{.05} \approx .022.$ \q9 {\it (a)} On $\{x \geq 0\} = \{y \geq 1\},$ $$F_X(x) = 1 - e^{-\lambda x}.$$ $$F_Y(y) = F_X(e^y) = 1 - e^{-\lambda e^y}.$$ $$f_Y(y) = \lambda e^y e^{-\lambda e^y} = \lambda e^{y-\lambda e^y}.$$ {\it (b)} $\lambda < 1$ gives convergence. \bye