{\bf Problem 1.} $$(cX - ac)(cY - bc)(cZ - bc) = c^3(X-a)(Y-b)(Z-b) = c^3(XYZ - XYb - XZb + Xb^2 - aYZ + aYb + abZ - ab^2)$$ This is $c^3XYZ - c^3XYb - c^3XZb + c^3Xb^2 - c^3aYZ + c^3aYb + c^3abZ - c^3ab^2,$ based on repeated application of the distributive property. {\bf Problem 2.} {\bf (a)} $$\sum_{i=1}^n Ca_i + Cb_i.$$ {\bf (b)} $$\sum_{i=1}^n\sum_{j=1}^n Ca_ia_j$$ {\bf (c)} $$\sum_{i=1}^n (c_1a_i + c_2b_i)$$ {\bf Problem 3.} $$\log_3(81) + 2\log_4(1024^{-1}) = 4 - 2\cdot 5 = -6$$ {\bf Problem 4.} $$\int_{-1}^1 xdx = \left[ x^2/2 \right]_{-1}^1 = 0.$$ $$\int_{-1}^1 x^2dx = \left[ x^3/3 \right]_{-1}^1 = 1/3 - (-1/3) = 2/3$$ $$\int_0^1 (x-a)^2 dx = \left[ (x-a)^3/3 \right]_0^1=((1-a)^3 + a^3)/3$$ {\bf Problem 5.} $$\int_0^\infty e^{-2x} dx = \lim_{x\to\infty}(e^{-2x} - e^0) = -1.$$ $$\int_{-\infty}^\infty e^{-2x} dx = \lim_{x\to\infty}(e^{-2x} - e^2x) = -\infty.$$ {\bf Problem 6.} $A,$ $B,$ and $C,$ as bounded intervals, are sets. By definition, if $x\in A \lor B,$ $x\in A\cap B,$ so if $A\supset C$ and $B\supset C,$ $\forall x\in C\to x\in A\cap B.$ {\bf Problem 7.} {\bf (a) } $$\int_{-\infty}^\infty f(x, y) dx = \int_0^y 24x^3y dx = 6y^5,$$ on $y\in[0,1],$ $0$ elsewhere. $$\int_{-\infty}^\infty f(x, y) dx = \int_x^1 24x^3y dy = \left[ 12x^3y^2 \right]_x^1 = 12x^3(1-x^2),$$ on $x\in[0,1],$ $0$ elsewhere. {\bf (b) } Integrating over the plane is equivalent to a double integral across both variables from $-\infty$ to $\infty,$ so we can find it by $$\int_0^1 6y^5 dy = 1.$$ {\bf Problem 8.} No. Let $f(x,y)$ be $2$ on $0