From 24f8c733a6082ad815009d53f418d44b382a2dfc Mon Sep 17 00:00:00 2001 From: Holden Rohrer Date: Sat, 12 Nov 2022 14:43:58 -0500 Subject: 8 homeworks from analysis --- lacey/hw4i.tex | 138 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 138 insertions(+) create mode 100644 lacey/hw4i.tex (limited to 'lacey/hw4i.tex') diff --git a/lacey/hw4i.tex b/lacey/hw4i.tex new file mode 100644 index 0000000..767c62b --- /dev/null +++ b/lacey/hw4i.tex @@ -0,0 +1,138 @@ +\font\bigbf=cmbx12 at 24pt +\newfam\bbold +\font\bbten=msbm10 +\font\bbsev=msbm7 +\font\bbfiv=msbm5 +\textfont\bbold=\bbten +\scriptfont\bbold=\bbsev +\scriptscriptfont\bbold=\bbfiv +\def\bb#1{{\fam\bbold #1}} +\input color + +\newcount\pno +\def\tf{\advance\pno by 1\smallskip\bgroup\item{(\number\pno)}} +\def\endtf{\egroup\medskip} +\def\false{\centerline{TRUE\qquad{\color{blue} FALSE}}} +\def\true{\centerline{{\color{blue} TRUE}\qquad FALSE}} + +\newcount\qno +\long\def\question#1{\ifnum\qno=0\else\vfil\eject\fi\bigskip\pno=0\advance\qno by 1\noindent{\bf Question \number\qno.} {\it #1}} + +\def\intro#1{\medskip\noindent{\it #1.}\quad} +\def\proof{\intro{Proof}} +\def\endproof{\leavevmode\hskip\parfillskip\vrule height 6pt width 6pt +depth 0pt{\parfillskip0pt\medskip}} + +\let\bu\bullet + +{\bigbf\centerline{Holden Rohrer}\bigskip\centerline{MATH 4317\qquad +HOMEWORK \#4, Part I}} + +\question{Answer True or False. No justification is needed.} + +\tf +If $\lim a_n = 0$ and $\{b_n\}$ is a bounded sequence, then $a_nb_n$ is +a convergent sequence. +\endtf + +\true + +\tf +If $\limsup_n a_n = 1$ and $\rho>1,$ then there is an $N>1$ such that +$a_n<\rho$ for all $n>N.$ +\endtf + +\true + +\tf +If $(a_n)$ is a Cauchy sequence, then $|a_n|$ is a Cauchy sequence. +\endtf + +\true + +\tf +If $(a_n)$ is a Cauchy sequence, then $\lfloor a_n\rfloor$ is a Cauchy +sequence. +\endtf + +\false + +\tf +If $(a_n)$ is a Cauchy sequence, then $\arctan(a_n)$ is a Cauchy +sequence. +\endtf + +\true + +\question{(Exercise 2.6.5) Consider the following (invented) definition: +a sequence $(s_n)$ is pseudo-Cauchy if, for all $\epsilon>0,$ there +exists an $N$ such that if $n>N,$ then $|s_n-s_{n+1}|<\epsilon.$ Supply +a proof for the valid statements and a counterexample for the false +statements.} + +\item{a.} Pseudo-Cauchy sequences are bounded. + +\intro{Disproof} +False. $s_n = \log n$ is clearly unbounded, but for all $\epsilon > 0,$ +we can choose some $N > 1/\epsilon.$ + +For all $n > N > 1/\epsilon,$ (or $\epsilon > 1/n$), starting from a +result of the definition of the exponential, +$$e^{1/n} > 1+1/n = (n+1)/n \Longrightarrow +\epsilon > 1/n > \log(n+1) - \log(n) = |s_n-s_{n+1}|.$$ + +\endproof + +\item{b.} Bounded Pseudo-Cauchy sequences are convergent. + +\intro{Disproof} +Consider $s_n = \log n,$ but modulated such that it ``bounces off'' the +bounds of the interval $(0,1),$ or more directly, +$s_n = |\log n\bmod 2-1|.$ +\endproof + +\item{c.} If $(x_n)$ and $(y_n)$ are pseudo-Cauchy, then $(x_n+y_n)$ is +Pseudo-Cauchy as well. + +\proof +Let $\epsilon > 0.$ We must have $N$ and $M$ such that for all $n > +\max\{N,M\},$ for both sequences, $|x_n-x_{n+1}|<\epsilon/2$ and +$|y_n-y_{n+1}|<\epsilon/2.$ +By the triangle inequality, +$$|x_n+y_n-x_{n+1}-y_{n+1}|<|x_n-x_{n+1}|+|y_n-y_{n+1}|<\epsilon.$$ +\endproof + +\question{Give an example of each or explain why the request is +impossible referencing the proper theorem(s).} + +\item{a.} Two series $\sum x_n$ and $\sum y_n$ that both diverge but +where $\sum x_ny_n$ converges. + +\intro{Example.} +Let $x_n = 1/n$ and $y_n = -1.$ +\endproof + +\item{b.} A convergent series $\sum x_n$ and a bounded sequence $(y_n)$ +such that $\sum x_n y_n$ diverges. + +\intro{Example.} +Let $x_n = (-1)^n 1/n$ and $y_n = (-1)^n.$ +\endproof + +\item{c.} Two sequences $(x_n)$ and $(y_n)$ where $x_n$ and $(x_n+y_n)$ +both converge but $y_n$ diverges. + +\intro{Disproof.} +If $x_n$ and $(x_n+y_n)$ converge, their difference should also +converge, their difference being $x_n+y_n-x_n = y_n.$ +This is implied from the Algebraic Limit Theorem for Series. +\endproof + +\item{d.} A sequence $(x_n)$ satisfying $0