\font\bigbf=cmbx12 at 24pt \newfam\bbold \font\bbten=msbm10 \font\bbsev=msbm7 \font\bbfiv=msbm5 \textfont\bbold=\bbten \scriptfont\bbold=\bbsev \scriptscriptfont\bbold=\bbfiv \def\bb#1{{\fam\bbold #1}} \input color \newcount\pno \def\tf{\advance\pno by 1\smallskip\bgroup\item{(\number\pno)}} \def\endtf{\egroup\medskip} \def\absolute{\centerline{{\color{blue} Absolute}\qquad Conditional\qquad Divergent}} \def\conditional{\centerline{Absolute\qquad{\color{blue} Conditional}\qquad Divergent}} \def\divergent{\centerline{Absolute\qquad Conditional\qquad{\color{blue} Divergent}}} \newcount\qno \long\def\question#1{\ifnum\qno=0\else\vfil\eject\fi\bigskip\pno=0\advance\qno by 1\noindent{\bf Question \number\qno.} {\it #1}} \def\intro#1{\medskip\noindent{\it #1.}\quad} \def\proof{\intro{Proof}} \def\endproof{\leavevmode\hskip\parfillskip\vrule height 6pt width 6pt depth 0pt{\parfillskip0pt\medskip}} \let\bu\bullet {\bigbf\centerline{Holden Rohrer}\bigskip\centerline{MATH 4317\qquad HOMEWORK \#5}} \question{Are the series absolutely convergent, conditionally convergent, or divergent? No proof required. (Cauchy Criteria can help on some of these.)} \tf $$\sum_n {\sin n\over n^2}$$ \endtf \absolute \tf $$\sum_n {(-1)^n\over n\log n}$$ \endtf \conditional \tf $${3\over 4}-{4\over 6}+{5\over 8}-{6\over 10}+{7\over 12}-\cdots$$ \endtf \divergent \tf $$\sum_n {(-1)^n\over n(\log n)^2}$$ \endtf \conditional \question{Show that the series $$\sum_n {(-1)^{n+1}\over n} = 1-{1\over 2}+{1\over 3}-{1\over 4}+\cdots$$ is convergent. (This is the simplest instance of the Alternating Series Test (Thm 2.7.7). But you can't just cite that, since the Theorem is not proved in the text. You can follow any of the proof strategies outlined in Exercise 2.7.1. Or come up with your own, tailored to this particular example.} \proof We start by stating $$s_n = 1-{1\over 2}+{1\over 3}-{1\over 4}+\cdots\pm {1\over n}.$$ Next, we calculate, for $n\geq 2k,$ $$s_n-s_{2k} = {1\over 2k+1} - {1\over 2k+2} +\cdots \pm {1\over n} = {1\over (2k+1)(2k+2)} + \cdots \pm {1\over n} > -{1\over n} > -{1\over 2k}.$$ By similar reasoning, $s_n-s_{2k+1}<{1\over 2k}.$ Therefore, $s_{2k}-{1\over 2k} < s_n < s_{2k+1}+{1\over 2k},$ and since $|s_{2k+1}+{1\over 2k}-s_{2k}+{1\over 2k}| \leq {3\over 2k},$ we can show for both that $$|s_n-s_{2k}| \leq {3\over 2k}\qquad |s_n-s_{2k+1}| \leq {3\over 2k}.$$ This means the sequence is Cauchy and thus convergent. \endproof \question{(2.7.9, Ratio Test) Given a series $\sum_n a_n,$ with $a_n \neq 0,$ the Ratio Test states that if $$\limsup_n \left|{a_n\over a_{n+1}}\right| = r < 1,$$ then the series $$\sum_n a_n$$ converges absolutely. Take these steps to verify this statement.} \item{a.} Show that for $r N,$ that $|a_n| < |a_N|s^{n-N}.$ \proof We will show this by induction. Note that $$\left|{a_{n+1}\over a_n}\right| = {|a_{n+1}|\over |a_n|}.$$ (This can be shown by a sort of casework: the signs of $a_n$ and $a_{n+1}$ can be independently flipped without affecting the expression, and the positive case is trivial) Using the same value of $N$ as in the previous question, we show the base case for $n = N+1,$ $${|a_{N+1}|\over |a_N|} < s \Longrightarrow |a_n| < s|a_N| \Longrightarrow |a_n| < |a_N|s^{n-N}.$$ For the inductive step, we assume for $n > N,$ that $|a_n| < s^{n-N}|a_N|,$ and then use ${|a_{n+1}|\over |a_n|} < s$ to show $|a_{n+1}| < s|a_n| < s^{n-N+1}|a_N|,$ completing the inductive step. \endproof \item{c.} Conclude that $\sum_n a_n$ converges absolutely. \proof Taking $N$ again as in previous questions, $$\sum_{n>N} |a_n| < \sum_{n>N} |a_N|s^{n-N} = {|a_N|\over 1-s},$$ and since the sequence is positive, the partial series are monotone increasing, giving convergence by the Monotone Convergence Theorem. The geometric sum is from the book. \endproof \bye