# Data from scipy.spatial import Voronoi, voronoi_plot_2d, KDTree, distance import matplotlib.pyplot as plt class Pit: def __init__(self, loc, depth, diam): self.loc = loc self.depth = depth self.diam = diam def __repr__(self): return '%s @ %.1fcm deep, %.1fcm wide' % (str(self.loc), self.depth, self.diam) def disp(self): return '%.1fcm dp\n %.1fcm wd' % (self.depth, self.diam) def __getitem__(self,ind): return self.loc[ind] class Date: def __init__(self, year, month, day): self.year = year self.month = month self.day = day def __repr__(self): return '%d-%d-%d' % (self.year, self.month, self.day) class Trial: def __init__(self, date, intro, dead, size, pits): self.date = date self.intro = intro self.dead = dead self.size = size self.pits = pits self.pitlocs = [pit.loc for pit in self.pits] def __repr__(self): return str(self.date) + ' ' + str(self.pits) def plot(self, save=False): vor = Voronoi([pit.loc for pit in self.pits]) voronoi_plot_2d(vor) for pit in self.pits: plt.text(pit[0], pit[1], pit.disp(), ha='center', va='bottom', size='small') plt.xlabel('%s (dimension %dx%dcm)' % (str(self.date), self.size[0], self.size[1])) if save: plt.savefig(str(self.date)+'.png', bbox_inches='tight') else: plt.show() def nearest_neighbor(self): tree = KDTree(self.pitlocs) sumnn = 0 return [dists[1] for dists in tree.query(self.pitlocs,2)[0]] trials = [ Trial(Date(2019, 10, 16), 31, 6, [33,32], [ Pit([4,25],1.3,4.2), Pit([3,13],1.4,3.7), Pit([10,25],1.1,3.0), Pit([18,18],1.8,2.3), Pit([30,14],2.2,3.1), Pit([29,11],1.4,2.5), Pit([27,10],1.2,2.1), Pit([29,6],2.4,3.9), Pit([26,5],1.8,3.6), ]), Trial(Date(2019, 10, 30), 27, 3, [24,24], [ Pit([4,21],2.0,7.0), Pit([7,22],2.5,4.1), Pit([2,9],0.5,2.0), Pit([12,18],1.2,2.5), Pit([12,11],1.2,3.0), Pit([20,11],1.0,3.0), Pit([19,2],1.5,4.0), ]), Trial(Date(2019, 12, 3), 19, 3, [17, 16], [ Pit([14,5],1.3,4.1), Pit([12,2],1.2,3.8), Pit([5,1],0.9,3.2), Pit([15,17],2.2,3.8), Pit([12,17],1.2,2.5), Pit([7,17],2.0,5.0), Pit([1,17],1.8,3.6), ]), Trial(Date(2019, 12, 5), 10, 0, [17, 16], [ Pit([17,4],1.3,3.1), Pit([10,4],1.5,3.1), Pit([16,9],1.4,2.9), ]), Trial(Date(2019, 12, 19), 12, 4, [8,7], [ Pit([4,7],.8,.9), Pit([3,5],.9,.8), Pit([8,2],2,3), ]), Trial(Date(2019, 12, 20), 5, 0, [8,7], [ Pit([6,7],.8,.8), Pit([2,2],.8,.8), Pit([8,6],.8,.8), Pit([2,9],.8,.8), ]), ] from sys import argv from math import sqrt from numpy import poly1d, polyfit from scipy.stats import pearsonr from collections import Counter if len(argv) < 2: print('You must provide at least one argument to choose the function of this program: `img` or `nei` or `depwid') quit() arg = argv[1] if arg == 'img': for trial in trials: trial.plot(save=True) elif arg == 'nei': x = [] y = [] for trial in trials: size = sqrt(trial.size[0]*trial.size[1]) nei = trial.nearest_neighbor() #for n in range(len(nei)): # nei[n] += n*.05 #x += [sqrt(trial.size[0]*trial.size[1])]*len(nei) #y += nei x.append(size) y.append(sum(nei)/len(nei)) fig = plt.figure() ax = fig.add_subplot(111) plt.text(0.1, 0.9, 'R^2 = %.3f\np=%.3f' % (pearsonr(x,y)[0]**2, pearsonr(x,y)[1]), ha='center', va='center', transform=ax.transAxes) plt.xlabel('Square root of Trial Area (cm)') plt.ylabel('Nearest Neighbor for Individual Pits (cm)') plt.plot(x, y, 'bo') plt.plot(x, poly1d(polyfit(x, y, 1))(x)) plt.savefig('nearest_neighbor.png', bbox_inches='tight') elif arg == 'depwid': depths, widths, sizes = [], [], [] for trial in trials: size = sqrt(trial.size[0]*trial.size[1]) for pit in trial.pits: sizes.append(size) depths.append(pit.depth) widths.append(pit.diam) weights = [20*i for i in Counter(depths).values() for j in range(i)] plt.scatter([size-.5 for size in sizes], depths, weights, 'b','o', label='depth') weights = [20*i for i in Counter(widths).values() for j in range(i)] plt.scatter(sizes, widths, weights, 'r', 'o', label='width') plt.xlabel('Square root of Trial Area (cm)') plt.ylabel('Depth/Width of Antlion Pits (cm)') plt.legend(loc='upper right') plt.text(10, 7, 'R^2 = %.3f\np=%.3f' % (pearsonr(sizes,depths)[0], pearsonr(sizes,depths)[1]), ha='center', va='center') plt.savefig('depth_width.png', bbox_inches='tight') if arg == 'table': print('\\table{') print('Dimensions (in)& Pit Depth (cm)& Pit Width (cm)& Nearest Neighbor (cm)') for trial in trials: size = trial.size nei = trial.nearest_neighbor() for pitind in range(len(trial.pits)): pit = trial.pits[pitind] print('& '.join(['x'.join([str(el) for el in size]), '%.1f' % pit.depth, '%.1f' % pit.diam, '%.2f' % nei[pitind]])+'\\cr\\noalign{\\hrule}') print('}') if arg == 'deathtable': print('\\table{') print('Trial Size& Date& Introduced& Deaths& Pits formed\\cr\\noalign{\\hrule}') for trial in trials: print('& '.join(['x'.join([str(el) for el in trial.size]), str(trial.date), str(trial.intro), str(trial.dead), str(len(trial.pits))])+'\\cr\\noalign{\\hrule}') print('}')