# Data from scipy.spatial import Voronoi, voronoi_plot_2d, KDTree, distance import matplotlib.pyplot as plt class Pit: def __init__(self, loc, depth, diam): self.loc = loc self.depth = depth self.diam = diam def __repr__(self): return '%s @ %.1fcm deep, %.1fcm wide' % (str(self.loc), self.depth, self.diam) def disp(self): return '%.1fcm dp\n %.1fcm wd' % (self.depth, self.diam) def __getitem__(self,ind): return self.loc[ind] class Date: def __init__(self, year, month, day): self.year = year self.month = month self.day = day def __repr__(self): return '%d-%d-%d' % (self.year, self.month, self.day) class Trial: def __init__(self, date, intro, dead, size, pits): self.date = date self.intro = intro self.dead = dead self.size = size self.pits = pits self.pitlocs = [pit.loc for pit in self.pits] def __repr__(self): return str(self.date) + ' ' + str(self.pits) def plot(self, save=False): vor = Voronoi([pit.loc for pit in self.pits]) voronoi_plot_2d(vor) for pit in self.pits: plt.text(pit[0], pit[1], pit.disp(), ha='center', va='bottom') plt.xlabel('%s (dimension %dx%dcm)' % (str(self.date), self.size[0], self.size[1])) if save: plt.savefig(str(self.date)+'.svg') else: plt.show() def nearest_neighbor(self): tree = KDTree(self.pitlocs) sumnn = 0 return [dists[1] for dists in tree.query(self.pitlocs,2)[0]] trials = [ Trial(Date(2019, 10, 16), 31, 6, [31,32], [ Pit([4,25],1.3,4.2), Pit([3,13],1.4,3.7), Pit([10,25],1.1,3.0), Pit([18,18],1.8,2.3), Pit([30,14],2.2,3.1), Pit([29,11],1.4,2.5), Pit([27,10],1.2,2.1), Pit([29,6],2.4,3.9), Pit([26,5],1.8,3.6), ]), Trial(Date(2019, 10, 30), 27, 3, [24,24], [ Pit([4,21],2.0,7.0), Pit([7,22],2.5,4.1), Pit([2,9],0.5,2.0), Pit([12,18],1.2,2.5), Pit([12,11],1.2,3.0), Pit([20,11],1.0,3.0), Pit([19,2],1.5,4.0), ]), Trial(Date(2019, 12, 3), 19, 3, [16, 16], [ Pit([14,5],1.3,4.1), Pit([12,2],1.2,3.8), Pit([5,1],0.9,3.2), Pit([15,17],2.2,3.8), Pit([12,17],1.2,2.5), Pit([7,17],2.0,5.0), Pit([1,17],1.8,3.6), ]), Trial(Date(2019, 12, 5), 10, 0, [16, 16], [ Pit([17,4],1.3,3.1), Pit([10,4],1.5,3.1), Pit([18,9],1.4,2.9), ]), Trial(Date(2019, 12, 19), 12, 4, [8,7], [ Pit([4,7],.8,.9), Pit([3,5],.9,.8), Pit([8,2],2,3), ]), Trial(Date(2019, 12, 20), 5, 0, [8,7], [ Pit([6,7],.8,.8), Pit([2,2],.8,.8), Pit([8,6],.8,.8), Pit([2,9],.8,.8), ]), ] import sys import math import numpy as np from scipy.stats import pearsonr if len(sys.argv) < 2: print('You must provide at least one argument to choose the function of this program: `image` or `neighbor`') quit() arg = sys.argv[1] if arg == 'image': for trial in trials: trial.plot(save=True) elif arg == 'neighbor': x = [] y = [] for trial in trials: nei = trial.nearest_neighbor() for n in range(len(nei)): nei[n] += ((-1)**n)*.05 plt.xlabel('Square root of Trial Area (cm)') plt.ylabel('Nearest Neighbor for Individual Pits (cm)') x += [math.sqrt(trial.size[0]*trial.size[1])]*len(nei) y += nei #print('p-value', pearsonr(x,y)) plt.plot(x, y, 'bo') plt.plot(x, np.poly1d(np.polyfit(x, y, 1))(x)) plt.show()