diff options
Diffstat (limited to 'houdre/hw8.tex')
-rw-r--r-- | houdre/hw8.tex | 154 |
1 files changed, 154 insertions, 0 deletions
diff --git a/houdre/hw8.tex b/houdre/hw8.tex new file mode 100644 index 0000000..930979e --- /dev/null +++ b/houdre/hw8.tex @@ -0,0 +1,154 @@ +\newfam\rsfs +\newfam\bbold +\def\scr#1{{\fam\rsfs #1}} +\def\bb#1{{\fam\bbold #1}} +\let\oldcal\cal +\def\cal#1{{\oldcal #1}} +\font\rsfsten=rsfs10 +\font\rsfssev=rsfs7 +\font\rsfsfiv=rsfs5 +\textfont\rsfs=\rsfsten +\scriptfont\rsfs=\rsfssev +\scriptscriptfont\rsfs=\rsfsfiv +\font\bbten=msbm10 +\font\bbsev=msbm7 +\font\bbfiv=msbm5 +\textfont\bbold=\bbten +\scriptfont\bbold=\bbsev +\scriptscriptfont\bbold=\bbfiv + +\def\Pr{\bb P} +\def\E{\bb E} +\newcount\qnum +\def\q{\afterassignment\qq\qnum=} +\def\qq{\qqq{\number\qnum}} +\def\qqq#1{\bigskip\goodbreak\noindent{\bf#1)}\smallskip} +\def\align#1{\vcenter{\halign{$\displaystyle##\hfil$\tabskip1em&& + $\hfil\displaystyle##$\cr#1}}} +\def\fr#1#2{{#1\over #2}} +\def\var{\mathop{\rm var}\nolimits} +\def\cov{\mathop{\rm cov}\nolimits} +\def\infint{\int_{-\infty}^\infty} +\def\pa#1#2{\partial#1/\partial#2} + +\q1 + +(a) + +$$\Pr(|Z_n-a|>\epsilon) = \Pr(Z_n<a-\epsilon) = \Pr(X_i<a-\epsilon)^n,$$ +which, since $\Pr(X_i<a-\epsilon)=1-\epsilon/a,$ (for small $\epsilon$) +$\to 0$ as $n\to\infty$ for all $\epsilon>0.$ + +(b) + +$$\Pr(|\sqrt{Z_n}-\sqrt{a}|>\epsilon) = +\Pr(\sqrt{Z_n}<\sqrt{a}-\epsilon) = +\Pr(Z_n<a-\sqrt{a}\epsilon+\epsilon^2) = +\Pr(X_i<a-\sqrt{a}\epsilon+\epsilon^2)^n = +(1-\epsilon(\sqrt{a}-\epsilon)/a)^n \to 0,$$ +as $n\to\infty$ because $\epsilon<\sqrt{a},$ otherwise the probability +is zero because the domain would be outside of the uniform distribution. + +% not done here + +(c) + +$$\Pr(U_n\leq x) = \Pr(1-Z_n\leq x/n) = \Pr(Z_n\geq 1-x/n) = +1-\Pr(Z_n < 1-x/n) = 1-\Pr(X_i < x/n)^n = 1-(1-x/n)^n,$$ +for $0<x<n,$ which becomes $x>0$ as $n\to\infty,$ and limits to +$1-e^{-x},$ by definition of the exponential. + +\q2 + +Let $Z_n$ be the normalization of sum $S_n$ of $n$ independent Bernoulli +variables, each with parameter $p$ and thus mean $p$ and variance $pq.$ +$$\Pr(|Z_n|\leq x) = \Pr(-x\leq Z_n\leq x) = +\Pr(np-\sqrt{npq}x\leq S_n\leq np+\sqrt{npq}x) = \sum{n\choose k}p^k +q^{n-k}.$$ +By the central limit theorem, as $n\to\infty,$ +$$\Pr(|Z_n|\leq x) = \Pr(Z_n\leq x) - \Pr(Z_n\leq -x) = \int_{-x}^x +{1\over\sqrt{2\pi}}e^{-\fr12 u^2}du = 2\int_0^x +{1\over\sqrt{2\pi}}e^{-\fr12 u^2}du.$$ + +\q3 + +$X_n,$ the binomial distribution is equivalent to the sum of $n$ +independent Bernoulli distributions $B_i$ with parameter $p.$ + +$$\E([n^{-1}X_n-p]^2) = \E(n^{-2}[(B_1-p)+(B_2-p)+\cdots+(B_n-p)]^2) = +n^{-2}(n\var(B_i)) = p(1-p)/n,$$ + +which $\to 0$, as $n\to\infty.$ Converging in mean square implies +converging in probability, therefore the distribution converges in +probability to $p.$ + +\q5 + +With $P_n$ the poisson distribution with parameter $n,$ +$$\Pr(P_n = k) = {n^k e^{-\lambda}\over k!},$$ +$$e^{-n}\left(1+n+{n^2\over 2!}+\cdots+{n^n\over n!}\right) = +\sum_{k=0}^n \Pr(P_n=k) = \Pr(P_n\leq n).$$ +$P_n = X_1+X_2+\cdots+X_n$ where $X_i$ has the Poisson distribution with +parameter 1. +The normalized version of $P_n$ is $(P_n-n)/\sqrt{x},$ because the mean +and variance of $X_i$ is $1.$ +As $n\to\infty,$ this distribution approaches the standard normal (by +the central limit theorem), and +$\Pr(P_n\leq n) \to \Pr(N(0,1)\leq0) = 1/2.$ + +\q7 + +$$\E([X_n+Y_n-(X+Y)]^2) = \E([X_n-X]^2) + \E([Y_n-Y]^2) + +2\E([Y_n-Y][X_n-X]).$$ + +As $n\to\infty,$ this approaches $2\E([Y_n-Y][X_n-x]) \leq +2\sqrt{\var(Y_n-Y)\var(X_n-X)},$ of which both variances $\to 0$ because +$Y_n \to Y$ in mean square and similar for $X_n,$ and therefore the +first expectation approaches zero and $X_n+Y_n \to X+Y.$ + +\q8 + +$$\E([X_n-X]^2)\to0\qquad\hbox{\it\ as } n\to\infty$$ +Let $V=1.$ By Cauchy-Schwartz, +$$\E(X_n-X)^2\leq\E([X_n-X]^2)\Rightarrow\E([X_n-X])\to 0,$$ +as $n\to\infty.$ + +By linearity of expectations, +$$\E(X_n)\to\E(X)\qquad\hbox{\it\ as } n\to\infty.$$ + +If $\Pr(Z_n=0) = 1-{1\over n}$ and $\Pr(Z_n=n) = {1\over n},$ $X_n\to +X=0$ in probability because as $n\to\infty,$ $\Pr(X>\epsilon) \to 0,$ +but $\E(X) = \E(0) = 0$ and $\E(X_n) = {n\over n} = 1.$ + +\q11 + +$$\Pr(|X|\geq a) = \Pr(g(X)\geq g(a)),$$ +by the fact that $g$ is symmetric and strictly increasing on $x>0.$ +$$\Pr(g(X)\geq g(a)) \leq {\E(g(X))\over g(a)},$$ +by Markov's inequality (since $g(X)$ is a random variable) given that +$g(x)>0,$ therefore the inequality is true. + +\q14 + +$X_n$ converges in mean square to the random variable $X,$ so +$$\E([X_n-X]^2) \to 0\qquad\hbox{\it\ as } n\to\infty,$$ + +$$\E([X_n-X_m]^2) = \E([X_n-X-(X_m-X)]^2) = +\E([X_n-X]^2)-2\E([X_n-X][X_m-X])+\E([X_m-X]^2) = 2\E([X_n-X][X_m-X]),$$ +as $n,m\to\infty,$ from the first assumption. + +By the Cauchy-Schwartz inequality, +$$\E([X_n-X][X_m-X])^2\leq \E([X_n-X]^2)\E([X_m-X])^2 \to 0,$$ +as $n\to\infty,$ so $\E([X_n-X][X_m-X]) \to 0,$ so the assumption is +proved. + +$$\cov(X_n,X_m) = \E([X_n-\E(X_n)][X_m-\E(X_m)]) = +\E([X_n-\mu][X_m-\mu])$$ + +$X_n$ and $X_m$ are sufficiently similar to $X,$ so +$$\E([X_n-\mu][X_m-\mu]) \to \E([X-\mu]^2) = \sigma^2 = +\sqrt{\var(X_n)\var(X_m)} \Rightarrow \rho\to 1.$$ + +% An incomplete answer: how is it sufficiently similar? + +\bye |