diff options
Diffstat (limited to 'kang/hw2.tex')
-rw-r--r-- | kang/hw2.tex | 166 |
1 files changed, 166 insertions, 0 deletions
diff --git a/kang/hw2.tex b/kang/hw2.tex new file mode 100644 index 0000000..5841038 --- /dev/null +++ b/kang/hw2.tex @@ -0,0 +1,166 @@ +\def\Re{\mathop{\rm Re}\nolimits} +\def\Im{\mathop{\rm Im}\nolimits} +\def\Arg{\mathop{\rm Arg}\nolimits} +\def\sec#1{\vskip0pt plus .3fil\goodbreak\vskip 0pt plus -.3fil\medskip\noindent{\bf#1}} +\tabskip=0pt plus 1fil + +% pg 13 +\sec{2.} + +Generally, $x<|x|,$ and $|z| = \sqrt{(\Re z)^2+(\Im z)^2} +\to |z|^2 = |\Re z|^2 + |\Im z|^2 \to |\Re z|^2\leq |z|^2 \to |\Re z| +\leq |z|.$ + +\sec{5.} + +\halign to \hsize{&#\cr +\vrule height 2in width 0pt\cr +$|z-1+i=1|$&$|z+i|\leq3$&$|z-4i|\geq4$\cr} + +%circle centered at (1-i) of rad 1 +%closed circle centered at -i +%everything but the circle of rad 4 around 4i, closed + +\sec{6.} + +$|z_1-z_2|$ is the distance between two points, so $|z-1| = |z+i|$ +represents every point $z$ that is equally distant from $(1,0)$ and +$(0,-1).$ These points can be imagined as the intersection points of two +expanding circles from these points. The expanding circles first meet at +the midpoint, and then the intersection points move perpendicular to the +line between them. The line between the two points has a slope of 1 and +goes through $(.5,-.5),$ so the perpendicular line will go through the +origin with slope $-1$. + +% pg 16 +\sec{2.} + +\halign to \hsize{&#\cr +\vrule height 2in width 0pt\cr +$\Re(\overline z - i) = 2$&$|2\overline z + i| = 4$\cr} + +%x = 2 +%|2\overline z + i| = |2z - i| = 2|z - i/2| = 4. Circ around i/2, rad 2 + +\sec{7.} + +$|\overline z| = |z|,$ and because $|z|\leq 1,$ $|z^3|=|z|^3\leq 1.$ + +$$|\Re(2+\overline z+z^3)| \leq |2+\overline z+z^3| \leq |2| + +|\overline z| + |z^3| \leq 4,$$ +by addition of the maximum values of each value. + +\sec{14.} + +$x^2-y^2 = 1 \to (\Re z)^2-(\Im z)^2 = 1 = +({z + \overline z\over 2})^2 - ({z - \overline z\over 2i})^2 = +(1/4)(({z+\overline z})^2 + ({z-\overline z})^2) = +(1/4)(z^2 + 2z\overline z + \overline z^2 + z^2 - 2z\overline z + +\overline z^2) = (1/4)(2z^2 + 2\overline z^2) +\to z^2 + \overline z^2 = 2.$ + +% pg 23 +\sec{1.} + +\noindent{\it (a)} + +$$z = {-2\over 1+\sqrt 3 i}.$$ + +$\arg z = \arg(-2) - \arg(1+\sqrt 3 i) = \pi - (\pi/3)+2\pi n = 2\pi/3 + +2\pi n.$ +Therefore, $\Arg z = 2\pi/3$ + +\noindent{\it (b)} + +$$z = \left(\sqrt3 - i\right)^6.$$ + +$\arg z = 6\arg\left(\sqrt3 - i\right) = 6(-5\pi/6) = -5\pi +\to \Arg z = \pi.$ + +\sec{6.} + +If $\Re z > 0,$ $-\pi/2 < \Arg z < \pi/2$ because the absolute angle +from the x-axis cannot be greater than $\pi/2.$ + +Because $\arg(z_1z_2) = \arg z_1 + \arg z_2,$ + +$$-\pi < \arg(z_1z_2) = \arg z_1 + \arg z_2 < \pi.$$ + +% pg 30 +\sec{3.} + +$$|-8-8\sqrt 3 i| = 16.$$ +$$\arg(-8-8\sqrt 3 i) = -2\pi/3+2\pi n.$$ +$$(-8-8\sqrt 3 i)^{1/4} = 2(\cos(-\pi/6+n\pi/2)+i\sin(-\pi/6+n\pi/2)).$$ +Fully expanded, this is $\pm(\sqrt3-i)$ and $\pm(1+\sqrt3i),$ which form +the vertices of a particular square. The principal root has argument +$-\pi/6,$ so it is $\sqrt3-i$ + +\sec{6.} + +$$z^4+4=0 \to z^4 = -4 \to z^4 = 4e^{i\pi+2n\pi} \to z = \sqrt2 +e^{i\pi/4 + n\pi/2},$$ + +so the other zeroes are $\pm(-1+i)$ and $\pm(1+i).$ + +$$(z-(1+i))(z-(1-i))(z+(1+i))(z+(1-i)) = (z^2-2z+2)(z^2+2z+2).$$ + +%pg 34 +\sec{5.} + +$S_1,$ where $|z|<1$ and $S_2,$ where $|z-2|<1$ are both open sets, so +they have no intersection. Because they don't intersect, there cannot be +a polygonal line that is continuous and in both sets. + +\sec{7.} + +\noindent{\it (a)} + +$z_n = i^n$ has no accumulation points because the set +$\{z_0,z_1,\ldots\} = \{1,i,-1,-i\},$ so any point $z$ other than these +four would not contain them in its neighborhood $\eta = |z-z_0|,$ where +$z_0$ is in the set (and these four points are not in their own deleted +neighborhoods). + +\noindent{\it (b)} + +$0$ is the accumulation point of this set. $|z_n-0| = 1/n,$ so for all +$\eta-{\rm neighborhoods}$ of $0$ include some elements of this set. + +\noindent{\it (c)} + +For this set, all points in $0\leq\arg z \leq \pi/2,$ and $z=0$ are +accumulation points because that is the closure of this open, connected +set. + +\noindent{\it (d)} + +For even $n,$ (i.e. $n$ where $(-1)^n = 1$) $|z_n - (1+i)| = 1/n,$ so +$(1+i)$ is an accumulation point. Similar is true for odd $n$ and +$-(1+i).$ No other points are accumulation points. + +%pg 43 +\sec{2.} + +\noindent{\it (a)} + +$$f(z) = z^3 + z + 1 = (x+iy)^3 + x + iy + 1 = x^3 + 3x^2yi - 3xy^2 - +y^3i + x + iy + 1$$$$ = (x^3 - 3xy + x - 1) + i(3x^2y - y^3 + i).$$ + +\noindent{\it (b)} + +$$f(z) = {\overline z^2\over z} = {\overline z^3\over z\overline z} = +{\overline z^3\over |z|^2} = {x^3+3x^2yi-3xy^2+y^3i\over x^2+y^2} = +{x^3-3xy^2\over x^2+y^2} + i{3x^2y+y^3\over x^2+y^2}.$$ + +\sec{8.} + +Images of $r\leq1$ and $0\leq\theta\leq\pi/4.$ + +\halign to \hsize{&#\cr +\vrule height 2in width 0pt\cr +$w=z^2$&$w=z^3$&$w=z^4$\cr} +% r \leq 1 for all +% 0\leq\theta\leq n\pi/4 where w=z^n + +\bye |