diff options
Diffstat (limited to 'kang/hw6.tex')
-rw-r--r-- | kang/hw6.tex | 64 |
1 files changed, 64 insertions, 0 deletions
diff --git a/kang/hw6.tex b/kang/hw6.tex new file mode 100644 index 0000000..a2b684e --- /dev/null +++ b/kang/hw6.tex @@ -0,0 +1,64 @@ +\def\Re{\mathop{\rm Re}\nolimits} +\def\Im{\mathop{\rm Im}\nolimits} +\def\Log{\mathop{\rm Log}\nolimits} +\let\rule\hrule +\def\hrule{\medskip\rule\medskip} + +% page 132 +\noindent{\bf 1.} + +\noindent{\it (a)} + +$$\int_0^\pi {2e^{i\theta}+2\over 2e^{i\theta}} 2ie^{i\theta} d\theta += \int_0^\pi i(2e^{i\theta} + 2) d\theta += \int_0^\pi 2ie^{i\theta} d\theta + \int_0^\pi 2i d\theta += 2(-1 - 1) + 2\pi i.$$ + +\noindent{\it (b)} + +$$\int_\pi^{2\pi} {2e^{i\theta} + 2\over 2e^{i\theta}} 2ie^{i\theta} d\theta += \int_\pi^{2\pi} i(2e^{i\theta} + 2) d\theta += \int_\pi^{2\pi} 2ie^{i\theta} d\theta + \int_\pi^{2\pi} 2 d\theta += 4 + 2\pi i. +$$ + +\noindent{\it (c)} + +This is equivalent to the sum of integrals over $(0, \pi)$ and $(\pi, +2\pi).$ + +\noindent{\bf 4.} + +Parameterizing the curve as $x + ix^3,$ with $x\in (-1, 1),$ +this integral can be taken as the two integrals (and the discontinuity +ignored because the function is defined at either side of it), +$$\int_{-1}^0 (1+3x^2) dx + \int_0^1 4x^3 (1+3x^2) dx += (1 + 1) + (1 + 2) = 5.$$ + +\hrule +%page 138 +\noindent{\bf 3.} + +The length of the triangle is $3+4+5 = 12,$ and the maximum value of +$$e^z - \overline{z}$$ is $$|e^z - \overline{z}| \leq e^x + \sqrt{x^2 + y^2} +\leq \max{e^z} + \max{\sqrt{x^2 + y^2}} \leq 1 + 4,$$ +so by the theorem, the integral will be less that $ML = 12*5 = 60.$ + +\noindent{\bf 4.} + +The length of the top half of the circle will be $\pi R,$ and the +maximum value of the integrand will be less than the quotient of the +maximum value of the dividend and the minimum value of the divisor. +$|2z^2 - 1|$ has a maximum value of $2R^2 + 1$ at $z = iR,$ and +$$z^4 + 5z^2 + 4 = (z^2 + 1)(z^2 + 4)$$ has a minimum value of $(R^2 - +1)(R^2 - 4)$ (coincidentally at $z = iR,$ although this isn't necessary) + +The upper bound for this integral is, therefore, $ML,$ which corresponds +to the given upper bound. + +Dividing the numerator and the denominator by $R^4$ gives +$$\pi({1/R} + O(1/R^2)) \over 1 + O(1/R),$$ and because $1/R$ and +$1/R^2$ both approach $0$ as $R$ approaches $\infty,$ we get +$$\pi(1/R),$$ which also approaches $0.$ + +\bye |