diff options
Diffstat (limited to 'kang/hw9.tex')
-rw-r--r-- | kang/hw9.tex | 185 |
1 files changed, 185 insertions, 0 deletions
diff --git a/kang/hw9.tex b/kang/hw9.tex new file mode 100644 index 0000000..10ba2f7 --- /dev/null +++ b/kang/hw9.tex @@ -0,0 +1,185 @@ +\def\Log{\mathop{\rm Log}\nolimits} +\let\rule\hrule +\def\hrule{\medskip\rule\medskip} + +%page 195 +\noindent{\bf 1.} + +First, +$$\cosh z = \sum_{n=0}^\infty {z^{2n}\over (2n)!}$$ + +Substituting $z^2$ for $z$ and then multiplying each term by $z$ will +give $z\cosh(z^2).$ + +$$z{(z^2)^{2n}\over (2n)!} = {zz^{4n} \over (2n)!} = {z^{4n+1}\over +(2n)!}.$$ + +This gives +$$z\cosh(z^2) = \sum_{n=0}^\infty {z^{4n+1}\over (2n)!}$$ +This applies over the entire plane because this function is entire. + +\noindent{\bf 3.} + +The Maclaurin expansion of +$$f(z) = {z\over z^4+4} = {z\over 4}\cdot {1\over 1+(z^4/4)}$$ +may be found by substituting $-z^4/4$ in the place of $z$ in the +standard $1/(1-z)$ Maclaurin expansion, then multiplying by $z/4.$ + +This gives +$$f(z) = \sum_{n=0}^\infty {z^{4n+1}\over 4^{n-1}}$$ + +\noindent{\bf 7.} + +$$f(z) = \sin z = {e^{iz} - e^{-iz}\over 2}.$$ +$$f^{(n)}(z) = i^n{e^{iz} - (-1)^ne^{-iz}\over 2}.$$ +Where $n = 2k+1,$ where $k$ is an integer, $f^{(n)}(0)$ simplifies to +$0$ because $e^{i0} - (-1)^{2k+1}e^{-i0} = 1 - 1 = 0.$ +Similarly, where $n = 2k,$ $f^{(n)}(0)$ simplifies to $i^{2k} = (-1)^k$ +because $e^{i0} - (-1)^{2k}e^{-i0} = 1 + 1 = 2,$ which substituted into +the original equation becomes $i^{2k}{2\over 2}.$ + +This provides an alternate justification of the Maclaurin expansion +given in Section 64. +Using the standard Maclaurin sum, +$$f(z) = \sum_{n=0}^\infty {f^{(n)}(0)z^n\over n!} = \sum_{k=0}^\infty +{f^{(2k)}(0)z^{2k}\over (2k)!} + \sum_{k=0}^\infty +{f^{(2k+1)}(0)z^{2k+1}\over (2k+1)!} = \sum_{k=0}^\infty +{(-1)^kz^{2k}\over (2k)!}$$ + +\hrule +%page 205 +\noindent{\bf 2.} + +$$f(z) = {1\over 1+z} = {1\over z}\cdot {1\over 1+(1/z)}$$ + +By substitution into the standard $1/(1-z)$ expansion (with $-1/z$ being +substituted for $z$), +$${1\over 1+(1/z)} = \sum_{n=0}^\infty (-1)^n(1/z)^n = +\sum_{n=0}^\infty {(-1)^n\over z^n}.$$ +$${1\over z} \cdot {1\over 1+(1/z)} = \sum_{n=0}^\infty {(-1)^n\over +z^{n+1}} = \sum_{n=1}^\infty {(-1)^{n-1}\over z^n}$$ + +The standard $1/(1-(-1/z))$ applies because +$1<|z|<\infty \to |-1/z| < 1.$ + +\noindent{\bf 3.} + +$${1\over z(1+z^2)} = {1\over z^3(1+(1/z^2))}$$ + +With $1<|z|<\infty \to |-1/z^2|<1,$ +$${1\over (1-(-1/z^2))} = \sum_{n=0}^\infty (-1)^n z^{-2n}.$$ +$${1\over z^3(1-(-1/z^2))} = \sum_{n=0}^\infty (-1)^n z^{-2n-3}.$$ + +\noindent{\bf 5.} + +% I know how to do this one. Just formulate 1/(z-1) and repeat for +% 1/(z-2) + +$$f(z) = {-1\over (z-1)(z-2)} = {1\over z-1} - {1\over z-2}.$$ + +Within $|z|<1,$ +$${1\over z-1} = -{1\over 1-z} = \sum_{n=0}^\infty (-1)z^n.$$ +On $|z|>1,$ +$${1\over z-1} = {1\over z}\cdot{1\over 1 - (1/z)} = +\sum_{n=0}^\infty z^{-(n+1)}.$$ + +Within $|z|<2,$ +$${1\over z-2} = -{1\over 2}\cdot{1\over 1 - z/2} = +\sum_{n=0}^\infty {(-1)z^n\over 2^{n+1}}.$$ +On $|z|>2,$ +$${1\over z-2} = {1\over z}\cdot{1\over 1-(2/z)} = \sum_{n=0}^\infty +2^n/z^(n+1)$$ + +Within $|z|<1$ and $|z|<2,$ ($D_1$) these become +$$\sum_{n=0}^\infty z^n\left({1\over 2^{n+1}} - 1\right).$$ + +Within $|z|>1$ and $|z|<2,$ ($D_2$) these become +$$\sum_{n=0}^\infty {z^n\over 2^{n+1}} + \sum_{n=1}^\infty {1\over z^n}.$$ + +Within $|z|>1$ and $|z|>2,$ ($D_3$) these become +$$\sum_{n=1}^\infty {1 - 2^{n-1}\over z^n}$$ + +\hrule +%page 218 +\noindent{\bf 1.} + +The first derivative of $1/(1-z)$ is $1/(1-z)^2,$ which will have the +Maclaurin series equal to the termwise differentiation of the $1/(1-z)$ +Maclaurina series. Except $n = 0,$ (for which $z^n = z^0$ has first +derivative 0) the first derivative of $z^n$ is $nz^{n-1}.$ +This gives summation +$${1\over (1-z)^2} = \sum_{n=1}^\infty nz^{n-1} = \sum_{n=0}^\infty +(n+1)z^n.$$ + +Similarly, the second derivative of $1/(1-z)$ is $2/(1-z)^3.$ +The second derivative of $z^n$ for $n\geq2$ is $n(n-1)z^{n-2},$ giving +summation +$${2\over (1-z)^3} = \sum_{n=2}^\infty n(n-1)z^{n-2} = \sum_{n=0}^\infty +(n+2)(n+1)z^n.$$ + +\noindent{\bf 5.} + +$${\cos z\over z^2 - (\pi/2)^2} = {\cos z\over (z-\pi/2)(z+\pi/2)} = +{\cos z\over \pi(z-\pi/2)} - {\cos z\over \pi(z+\pi/2)} = +{-\sin(z-\pi/2)\over \pi(z-\pi/2)} - {\sin(z+\pi/2)\over \pi(z+\pi/2)}.$$ + +As shown in the example in Section 71, $\sin w/w$ is analytic, so this +function is analytic. + +\noindent{\bf 6.} + +With $|z-1|<1,$ +$$\int_1^z {1\over w}dw = \sum_{n=0}^\infty \int_1^z (-1)^n (w-1)^n dw +\to \Log z = \sum_{n=0}^\infty (-1)^n (z-1)^{n+1}/(n+1) = +\sum_{n=1}^\infty {(-1)^{n+1}(z-1)^n\over n}.$$ + +\hrule +%page 224 +\noindent{\bf 1.} + +On $0<|z|<1,$ +$$e^z = 1 + z + z^2/2 + z^3/6 + \cdots$$ + +$${1\over z(z^2+1)} = 1/z - z + \cdots$$ + +Taking their product gives + +$${e^z\over z(z^2+1)} = 1/z + 1 + z/2 + z^2/6 - z - z^2 + \cdots = +1/z + 1 - z/2 - 5z^2/6 + \cdots$$ + +\hrule +%page 237 +\noindent{\bf 1.} +% I don't understand residues at all. + +\noindent{\it (a)} + +$${1\over z+z^2} = {(1+z)^{-1}\over z},$$ +giving a residue of $1+z,$ or, at $z=0,$ $1.$ + +\noindent{\it (b)} + +$$z\cos\left({1\over z}\right) = \sum_{n=0}^\infty (-1)^n {z^{1-2n}\over +(2n)!}.$$ +The value at $z^{-1}$ or $1-2n = -1 \to n = 1$ is $-1/2.$ + +\noindent{\it (c)} + +$${z-\sin z\over z} = 1 - \sum_{n=0}^\infty (-1)^n {z^{2n}\over (2n+1)!}$$ +has residue of $0$ because this is strictly a Taylor series. + +\noindent{\it (d)} + +Noting that $\cot z = 1/z - z/3 - z^3/45 + \ldots,$ +$${\cot z\over z^4} = {1\over z^4}(1/z - z/3 - z^3/45 + \ldots) = +{1\over z^5} - {1\over 3z^3} - {1\over 45z} + \ldots,$$ +giving a residue of $-1/45.$ + +\noindent{\it (e)} + +$${\sinh z\over z^4(1-z^2)} = +z^{-4}(z+{z^3\over 3!}+\cdots)(1+z^2+z^4+\cdots) = +z^{-3} + z^{-1}/6 + z^{-1} + z/6 + z + z^3/6,$$ +giving a residue of $7/6.$ + +\bye |