aboutsummaryrefslogtreecommitdiff
path: root/jarrio
diff options
context:
space:
mode:
Diffstat (limited to 'jarrio')
-rw-r--r--jarrio/week11.bc67
-rw-r--r--jarrio/week12.bc164
2 files changed, 231 insertions, 0 deletions
diff --git a/jarrio/week11.bc b/jarrio/week11.bc
new file mode 100644
index 0000000..da49df1
--- /dev/null
+++ b/jarrio/week11.bc
@@ -0,0 +1,67 @@
+scale = 30
+qel = 1.602*10^(-19) # elementary charge in Coulombs
+pi = 4*a(1)
+mu0 = 4*pi * 10^(-7)
+
+print "Weekly Practice 11\n"
+
+vz = 4.8*10^7 # m/s
+print "nonzero term on the first one\n"
+-mu0/(4*pi) * qel*vz*.02/.02^3
+
+print "nonzero term on the third one\n"
+mu0/(4*pi) * qel*vz*.02/sqrt(.02^2+.02^2)^3
+
+print "#2\n"
+vy = 2*10^7
+print mu0/(4*pi) * qel*vy*.02/sqrt(.02^2+.02^2)^3
+print "k\n"
+
+print "#3 (T)\n"
+#params
+i = 4.8 # A
+d = 1.9 # cm
+
+d = d/100 # m
+r = d/2 # m
+loopmag = mu0/(4*pi) * i*(pi*d)/r^2
+wiremag = mu0*i/(2*pi*r)
+loopmag + wiremag
+
+print "#4 (T, pos = into screen, neg = out of screen)\n"
+#params
+i = 4 # A
+r1 = .9 # cm
+r2 = 1.8 # cm
+
+r1 = r1/100 # m
+r2 = r2/100 # m
+
+# mu0/4pi Idl/r1^2
+(mu0 * i * (pi*r1)/r1^2 - mu0 * i * (pi*r2)/r2^2)/(4*pi)
+
+print "#5\n"
+#params
+l = 30 # cm
+mf = 4.8 # mT
+diamg18 = 1.02 # mm
+ig18 = 6 # A
+diamg26 = .41 # mm
+ig26 = 1 # A
+
+# B*diamg18 = mu0*I
+print "To reach necessary magnetic field with #26, current is\n"
+mf*diamg26/mu0/10^6
+print "Therefore, we should use #18 with current (A)\n"
+mf*diamg18/mu0/10^6
+
+print "#7\n"
+#params
+l = 1.3 # m
+mf = 1.4 # mT
+i = 1.5 # A
+
+# Biot-Savart: mu0/4pi * idl/r^2 = B
+# mu0/4pi * i * l / B = r^2
+print "Diameter is (m)\n"
+sqrt(mu0/(4*pi) * i * l / mf * 1000)*2
diff --git a/jarrio/week12.bc b/jarrio/week12.bc
new file mode 100644
index 0000000..fe5a7bd
--- /dev/null
+++ b/jarrio/week12.bc
@@ -0,0 +1,164 @@
+print "Weekly Practice 12\n"
+qelem = 1.6*10^(-19) # C
+pi = 4*a(1)
+mu0 = 4*pi*10^(-7)
+g = 9.81 # m/s^2
+scale = 40
+
+print "#1\n"
+# magnetic field in this problem is |B| @ theta ccw from +x.
+# we find the i and j components. i\times j = k. j\times i = -k.
+#params
+v1 = 1.25 * 10^6 #i m/s
+f1 = 1.64 * 10^(-16) #k N
+v2 = 2.49 * 10^6 #j m/s
+f2 = -4.04* 10^(-16) #k N
+
+# v1*bj*q = f1
+bj = f1/v1/qelem
+# v2*bi*q = -f2
+bi = -f2/v2/qelem
+
+print "Magnitude (T)\n"
+sqrt((bi*10^16)^2 + (bj*10^16)^2)*10^(-16)
+
+print "Angle ccw from +x axis (deg)\n"
+a(bj/bi)*180/pi
+
+scale = 40
+print "#2\n"
+#params
+v = 4*10^4 # m/s
+b = 5 # mT
+
+m = 1.67*10^(-27) # kg
+b = b/1000
+a = (b*qelem*v/m)
+r = v^2/a
+# r = vm/bq
+print "Diameter (m)\n"
+2*r
+
+print "#3\n"
+#params
+mf = 27 # mT
+v = 5.5 * 10^6 # m/s
+thdeg = 30
+
+th = thdeg*pi/180
+mf = mf/1000 # T
+vx = v*c(th)
+melec = 9.1*10^(-31)
+r = vx*melec/(mf*qelem)
+print "Radius (m)\n"
+r
+c = 2*pi*r
+t = c/vx
+
+print "Pitch (m)\n"
+t*v*s(th)
+
+print "#4\n"
+#params
+l = 52 # mass density - g/m
+d = 4 # cm
+
+d = d/100 # m
+l = l/1000 # kg/m
+
+w = l*g # N/m
+# Up and down cancel out from the two base wires, so we get an mf of
+# 2*mu0*I*s(60deg)/(2pi*d) and a force (per meter) of I*mf = w
+# i^2 * 2*mu0*s(60*pi/180)/(2*pi*d) = w
+i = sqrt(w/(2*mu0*s(60*pi/180)/(2*pi*d)))
+
+print "Current (A)\n"
+i
+
+print "#5\n"
+#params
+s = 5.1 # cm
+i = 470 # mA
+b = 1.7 # T
+thdeg = 30
+
+# We use magnetic moment here
+
+s = s/100 # m
+i = i/1000 # A
+th = thdeg*pi/180
+
+print "Torque Magnitude (Nm)\n"
+s^2*s(th)*b*i
+
+print "#6\n"
+#params
+k = 12 # N/m - spring constant
+d = .7 # cm
+b = .5 # T
+l = 20 # cm
+
+d = d/100 # m
+l = l/100 # m
+f = 2*k*d # N (two springs, double the force)
+# i*l*b = f
+i = f/(l*b)
+
+print "Current (A)\n"
+i
+
+print "#7\n"
+#params
+m = 4 # kg
+s = 5.5 # m
+i = 25 # A
+thdeg = 25
+
+th = thdeg*pi/180
+
+w = m*g
+t = w*s/2
+a = s^2
+# a*i*b = t
+b = t/(a*i) # what happened to the angle lmao. this is right (??)
+
+print "Magnetic field (T)\n"
+b
+
+print "#8\n"
+#params
+dv = .02 # V
+l = 10 # cm
+v = 5 # m/s
+
+l = l/100 # m
+ef = dv/l # some stackexchange article said so
+# ef = v*b
+
+print "Magnetic field into the page (T)\n"
+ef/v
+
+print "#9\n"
+#params
+b = .45 # T
+v = .5 # m/s
+ohm = 2 # Ohm
+d = 10 # cm
+
+d = d/100 # m
+i = v*d*b/ohm # IMPORTANT !!!
+p = i^2*ohm
+# f*v = p
+f = p/v
+
+print "Pushing force (N)\n"
+f
+
+print "Power (W)\n"
+p
+
+print "Current - induced counterclockwise (A)\n"
+i
+
+print "Power dissipated by resistor (W)\n"
+p