aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--final/rsa-method.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/final/rsa-method.tex b/final/rsa-method.tex
index bf75cd0..af2c15a 100644
--- a/final/rsa-method.tex
+++ b/final/rsa-method.tex
@@ -6,7 +6,7 @@ The encryption process begins with the selection of two large primes, $p$ and $q
\pre{2.} Break the converted message into blocks of size less than $n$.
\pre{3.} For each block B, an encrypted block C is created such that $$C \equiv B^e\thinspace(mod\thinspace n)$$.
\noindent To decrypt that message:
-\pre{1.} Calculate an integer $d$ such that $de \equiv 1 \mod{\phi(n)}$ using the Euclidean algorithm.
+\pre{1.} Calculate an integer $d$ such that $de \equiv 1 \mod{\phi(n)}$ using the Euclidean algorithm. Note that $\phi(n)$ is the totient function, or the number of non-coprime integers with $n$ less than $n$.
\pre{2.} Convert back using $B \equiv C^d \mod{n}$.
The decryption process described above makes use of Euler’s theorem.