diff options
author | Holden Rohrer <hr@hrhr.dev> | 2020-04-03 17:44:18 -0400 |
---|---|---|
committer | Holden Rohrer <hr@hrhr.dev> | 2020-04-03 17:44:18 -0400 |
commit | 2c18d2f1f2888eb2eb8779457db70f2f8615c2b9 (patch) | |
tree | 854c87c5582307c7ad1386e8e23f1723a8eca4ea | |
parent | 905bf6ee0dca625a0bb4b2336350d60b40220626 (diff) |
minor fix
-rw-r--r-- | progreport/document.tex | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/progreport/document.tex b/progreport/document.tex index 7ec2077..7b34439 100644 --- a/progreport/document.tex +++ b/progreport/document.tex @@ -24,7 +24,7 @@ entire problem uses $E(t) = \sin(\omega t)$. From Kirchhoff's Voltage law over the first (xy) loop, $$E(t) = \sin(\omega t) = x(t)R_1 + {1\over C_1}\int y(t)dt.$$ -Kirchhoff's Voltage law also applies to the second yz-loop: +Kirchhoff's Voltage law also applies to the second (yz) loop: $${1\over C_1}\int y(t)dt = {1\over C_2}\int z(t)dt + z(t)\rload.$$ Differentiating and rearranging gives: $$x'(t) = -{y(t) \over R_1C_1} + {\omega\cos(\omega t) \over R_1},$$ |