summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorHolden Rohrer <hr@hrhr.dev>2020-04-14 13:21:43 -0400
committerHolden Rohrer <hr@hrhr.dev>2020-04-14 13:21:43 -0400
commitb68e4b382d5e09827d765038395bdad76de7959d (patch)
tree090fbb5e86655543ac3b06367106db120cdec8e8
parentf367c3918b1f068db4032a67bd489315719f2e9e (diff)
removed false eigen* and fixed matrix rep
-rw-r--r--execsumm/document.tex20
1 files changed, 9 insertions, 11 deletions
diff --git a/execsumm/document.tex b/execsumm/document.tex
index c308d05..45d6546 100644
--- a/execsumm/document.tex
+++ b/execsumm/document.tex
@@ -1,5 +1,4 @@
\def\rload{R_{\rm load}}
-\def\opt#1{\vskip0pt plus #1\vskip 0pt plus -#1}
\input ../format
\titlesub{Part 3: Executive Summary}{Mystery Circuit}
@@ -11,14 +10,15 @@ To determine the relevant properties of the linear system, matrix form
is useful (this form was chosen to reduce fractions' usage):
\def\x{{\bf x}}
$$\x' =
-{1\over R_1C_1C_2\rload}\left(
+{1\over R_1C_1C_2\rload}
\pmatrix{0&-C_2\rload &0 \cr
0&-C_2(R_1+\rload)&-C_1\rload\cr
0&C_2R_1 &-C_1\rload} \x +
+{1\over R_1}
\pmatrix{\omega\cos(\omega t)\cr
\omega\cos(\omega t)\cr
0}
-\right).
+.
$$
The characteristic polynomial is
$$-\lambda( (-\lambda-C_2(R_1+\rload))(-\lambda-C_1\rload)
@@ -30,21 +30,19 @@ In terms of its roots (with $b=C_2(R_1+\rload)+C_1\rload$ and
$c = C_1C_2\rload(2R_1+\rload),$
$$-\lambda{(\lambda-{-b+\sqrt{b^2-4c}\over2})
(\lambda-{-b-\sqrt{b^2-4c}\over 2})}$$
+%For reference,
+%$$b^2-4c = C_2^2(R_1+\rload)^2 + C_1^2\rload^2
+% - 2C_1C_2\rload(3R_1+\rload).$$
+Let $r_1$ and $r_2$ designate these two non-zero roots.
\def\bu{\par\leavevmode\llap{\hbox to \parindent{\hfil $\bullet$ \hfil}}}
-\opt{.15fil}
\noindent The eigenvalues and respective eigenvectors are:
\bu $\lambda_1 = 0, v_1 = \pmatrix{1\cr0\cr0}$
-\def\num{\pmatrix{C_2\rload\cr C_2\rload\cr C_2R_1}}
-\bu $\lambda_2 = -C_2\rload, v_2 = \num$
+\bu $\lambda_2 = r_1, v_2 = ??$
-\bu $\lambda_3 = -C_2\rload, v_2 = \pmatrix{0\cr0\cr1}$
-
-This gives the solution to the homogenous system
-$$D_1\pmatrix{1\cr0\cr0} + D_2e^{-C_2\rload t}\num
-+ D_3te^{-C_2\rload t}\pmatrix{0\cr0\cr1}.$$
+\bu $\lambda_3 = r_2, v_3 = ??$
Extending to the nonhomogenous system,