diff options
author | Holden Rohrer <hr@hrhr.dev> | 2020-04-14 22:45:30 -0400 |
---|---|---|
committer | Holden Rohrer <hr@hrhr.dev> | 2020-04-14 22:45:30 -0400 |
commit | 8597e61bbc705420fe88f4b73761165ce5a190dd (patch) | |
tree | c0ad470bcf893102399dbd740ebdf8436f83e683 /execsumm | |
parent | 725f8b2b2fc250dcd6efdf8ba4108b196ed6d6b3 (diff) |
clarified parts
Diffstat (limited to 'execsumm')
-rw-r--r-- | execsumm/document.tex | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/execsumm/document.tex b/execsumm/document.tex index 2354637..b3af5a2 100644 --- a/execsumm/document.tex +++ b/execsumm/document.tex @@ -81,7 +81,7 @@ both complex and real eigenvalues may be found. Essentially, the solution is ${\bf x} = c_1{\bf\lambda_1}(t) + c_2{\bf \lambda_2}(t) + c_3{\bf \lambda_3}(t){\bf\lambda_p}(t)$, where the particular solution ${\bf\lambda_p}(t)$ is: -$${\bf \lambda_p}(t) = {\bf X}(t)\int{\bf X^{-1}}(t){\bf g}(t)dt,$$ +$${\bf \lambda}(t) = {\bf X}(t)\int{\bf X^{-1}}(t){\bf g}(t)dt,$$ where $\bf{X}(t)$ is the Fundamental matrix for the equation and ${\bf g}(t) = {1\over R_1} \pmatrix{\omega\cos(\omega t)\cr |