summaryrefslogtreecommitdiff
path: root/execsumm/ExecutiveSummaryDraft.tex
blob: 498aac9020dd2620c41468c64a2a1037e4e21df6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
\documentclass{article}
\usepackage{hyperref}
\usepackage[scr]{rsfso}
\def\rload{R_{\rm load}}
\date{}
\begin{document}
\title{Project Executive Summary}
\author{Holden Rohrer and Nithya Jayakumar}

\maketitle
\section{Matrix Representation and Homogeneous Solution}

To determine the relevant properties of the linear system, matrix form
is useful (this form was chosen to reduce fractions' usage):
\def\x{{\bf x}}
$$\x' =
{1\over R_1C_1C_2\rload}
\pmatrix{0&-C_2\rload      &0 \cr
         0&-C_2(R_1+\rload)&C_1R_1\cr
         0&C_2R_1          &-C_1R_1}   \x +
{1\over R_1}
\pmatrix{\omega\cos(\omega t)\cr
         \omega\cos(\omega t)\cr
         0}
.$$
\section{Application of Laplace Transformation}
We can apply the Laplace Transformation in order to solve this system of differential equations.
We have the three equations for $x'$, $y'$, and $z'$, and we can take the Laplace Transform of each of these equations"
$$\mathscr{L}\{x' = \frac{-y}{C_1R_1} + \frac{\omega\cos(\omega t)}{R_1}\} \Rightarrow sX(s) - x(0) = \frac{Y(s)}{C_1R_1} + \frac{\omega s}{R_1(s^2 + \omega^2)}$$
$$\mathscr{L}\{y' = y\frac{-R_1 - \rload}{R_1C_1\rload} + \frac{z}{C_2\rload} + \frac{\omega\cos(\omega t)}{R_1} \} \Rightarrow sY(s) - y(0) = Y(s)(\frac{-R_1-\rload}{R_1C_1\rload}) + \frac{Z(s)}{C_2\rload} + \frac{\omega s}{R_1(s^2 + \omega^2)}$$
$$\mathscr{L}\{z' = \frac{y}{C_1\rload} - \frac{z}{C_2\rload}  \} \Rightarrow sZ(s) - z(0) = \frac{Y(s)}{C_1\rload} - \frac{Z(s)}{C_2\rload}$$

The last two equations we get can be used to solve for $Z(s)$, which we find to be $$Z(s) = \frac{\omega s(C_1C_2\rload^2)}{(s^2 + \omega^2)(s^2 + s(C_1R_1\rload + R_1C_2\rload + \rload^2C_2) + \rload)}$$

We can now find the partial fraction decomposition of this: 
$$Z(s) = \frac{\omega s(C_1C_2\rload^2)}{(s^2 + \omega^2)(s^2 + s(C_1R_1\rload + R_1C_2\rload + \rload^2C_2) + \rload)} = $$ $$\frac{As + B}{s^2 + \omega^2} + \frac{Cs + D}{(s^2 + \omega^2)(s^2 + s(C_1R_1\rload + R_1C_2\rload + \rload^2C_2) + \rload)} = \omega sC_1C_2\rload^2$$
To simplify notation, let $b = (s^2 + \omega^2)(s^2 + s(C_1R_1\rload + R_1C_2\rload + \rload^2C_2) + \rload)$
We find that $$A = \frac{C_1C_2\rload^2\omega (\rload - \omega^2)}{b^2\omega^2 + \rload^2 - 2\rload - 2\rload\omega^2 + \omega^2}$$
$$B = \frac{bC_1C_2\rload^2\omega^3}{b^2\omega^2 + \rload^2 - 2\rload\omega^2 + \omega^4}$$
$$C = \frac{-C_1C_2\rload^2\omega(\rload - \omega^2)}{b^2\omega^2 + \rload^2 - 2\rload\omega^2 + \omega^4}$$
\end{document}