summaryrefslogtreecommitdiff
path: root/execsumm/document.tex
blob: 32d4a0a7e0ae3764e00b8182e93949b02d9a8c6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
\def\rload{R_{\rm load}}
\def\opt#1{\vskip0pt plus #1\vskip 0pt plus -#1}
\input ../format
\titlesub{Part 3: Executive Summary}{Mystery Circuit}

\input ../com

\section{Matrix Representation}

To determine the relevant properties of the linear system, matrix form
is useful (this form was chosen to reduce fractions' usage):
\def\x{{\bf x}}
$$\x' =
{1\over R_1C_1C_2\rload}\left(
\pmatrix{0&-C_2\rload      &0 \cr
         0&-C_2(R_1+\rload)&-C_1\rload\cr
         0&C_2R_1          &-C_1\rload}   \x +
\pmatrix{\omega\cos(\omega t)\cr
         \omega\cos(\omega t)\cr
         0}
\right).
$$
The characteristic polynomial is
$$-\lambda( (-\lambda-C_2(R_1+\rload))(-\lambda-C_1\rload)
+ C_2^2R_1\rload).$$
Expanded,
$$-\lambda( \lambda^2 + \lambda(C_2(R_1+\rload)+C_1\rload)
+ C_1C_2\rload(R_1+\rload) + C_2^2R_1\rload).$$
In terms of its roots,
$$???$$

\def\bu{\par\leavevmode\llap{\hbox to \parindent{\hfil $\bullet$ \hfil}}}
\opt{.15fil}
\noindent The eigenvalues and respective eigenvectors are:

\bu $\lambda_1 = 0, v_1 = \pmatrix{1\cr0\cr0}$

\def\num{\pmatrix{C_2\rload\cr C_2\rload\cr C_2R_1}}
\bu $\lambda_2 = -C_2\rload, v_2 = \num$

\bu $\lambda_3 = -C_2\rload, v_2 = \pmatrix{0\cr0\cr1}$

This gives the solution to the homogenous system
$$D_1\pmatrix{1\cr0\cr0} + D_2e^{-C_2\rload t}\num
+ D_3te^{-C_2\rload t}\pmatrix{0\cr0\cr1}.$$

Extending to the nonhomogenous system, 

\bye