aboutsummaryrefslogtreecommitdiff
path: root/tech-math/ws6.tex
diff options
context:
space:
mode:
Diffstat (limited to 'tech-math/ws6.tex')
-rw-r--r--tech-math/ws6.tex29
1 files changed, 29 insertions, 0 deletions
diff --git a/tech-math/ws6.tex b/tech-math/ws6.tex
new file mode 100644
index 0000000..5042920
--- /dev/null
+++ b/tech-math/ws6.tex
@@ -0,0 +1,29 @@
+\def\pre#1{\leavevmode\llap{\hbox to \parindent{\hfil #1 \hfil}}}
+
+\noindent {\bf Q1)} %#14:2
+
+Considering a flow from Source $S$ which is connected to all members of $V_1$ and a similar sink $T$ with respect to $V_2$, this can be solved by the Ford-Fulkerson algorithm.
+
+Let $V_{kj}$ be the $j^{th}$ member, from left to right of $V_k$. The optimum matching is $$\{V_11\to V_22, V_12\to V_27, V_13\to V_25, V_14\to V_21, V_15\to V_26, V_17\to V_24\}$$ because the Ford-Fulkerson algorithm halts, and Hall's theorem holds: there is a grouping of vertices in $V_1$ with a fewer number of neighbors than in the group.
+
+\noindent {\bf Q2)} %#14:8
+
+$w=3$.
+
+Antichain: $\{x_1,x_2,x_3\}$.
+
+Chain Partition: $\{x_3,x_4,x_5\}\cup\{x_6,x_1\}\cup\{x_2\}$.
+
+\noindent {\bf Q3)} %#15:2
+
+\let\sp\thinspace
+$$\pi_1\pi_2 = \left({1\sp 2\sp 3\sp 4\sp 5\sp 6 \atop
+ 3\sp 6\sp 4\sp 2\sp 1\sp 5}\right)$$
+$$\pi_2\pi_1 = \left({1\sp 2\sp 3\sp 4\sp 5\sp 6 \atop
+ 3\sp 1\sp 4\sp 5\sp 6\sp 2}\right)$$
+$$\pi_3\pi_4 = \left({1\sp 2\sp 3\sp 4\sp 5\sp 6\sp 7\sp 8 \atop
+ 1\sp 3\sp 8\sp 5\sp 7\sp 4\sp 6\sp 2}\right)$$
+$$\pi_4\pi_3 = \left({1\sp 2\sp 3\sp 4\sp 5\sp 6\sp 7\sp 8 \atop
+ 5\sp 4\sp 3\sp 6\sp 7\sp 8\sp 1\sp 2}\right)$$
+
+\bye