diff options
author | Holden Rohrer <hr@hrhr.dev> | 2020-11-10 15:32:37 -0500 |
---|---|---|
committer | Holden Rohrer <hr@hrhr.dev> | 2020-11-10 15:32:37 -0500 |
commit | e42c34d1323f59727fd14fcad97976056001e375 (patch) | |
tree | b3662fdab18062a57f4f8a81bae51965597f2e48 /houdre | |
parent | 406da5e66da599d0aca74e7bc9b57e508659b345 (diff) |
ver1 of hw7.tex
It's due at 6, but I don't understand #20 (might fix it later).
Diffstat (limited to 'houdre')
-rw-r--r-- | houdre/hw7.tex | 135 |
1 files changed, 135 insertions, 0 deletions
diff --git a/houdre/hw7.tex b/houdre/hw7.tex new file mode 100644 index 0000000..0d4a65e --- /dev/null +++ b/houdre/hw7.tex @@ -0,0 +1,135 @@ +\newfam\rsfs +\newfam\bbold +\def\scr#1{{\fam\rsfs #1}} +\def\bb#1{{\fam\bbold #1}} +\let\oldcal\cal +\def\cal#1{{\oldcal #1}} +\font\rsfsten=rsfs10 +\font\rsfssev=rsfs7 +\font\rsfsfiv=rsfs5 +\textfont\rsfs=\rsfsten +\scriptfont\rsfs=\rsfssev +\scriptscriptfont\rsfs=\rsfsfiv +\font\bbten=msbm10 +\font\bbsev=msbm7 +\font\bbfiv=msbm5 +\textfont\bbold=\bbten +\scriptfont\bbold=\bbsev +\scriptscriptfont\bbold=\bbfiv + +\def\Pr{\bb P} +\def\E{\bb E} +\newcount\qnum +\def\q{\afterassignment\qq\qnum=} +\def\qq{\qqq{\number\qnum}} +\def\qqq#1{\bigskip\goodbreak\noindent{\bf#1)}\smallskip} +\def\align#1{\vcenter{\halign{$\displaystyle##\hfil$\tabskip1em&& + $\hfil\displaystyle##$\cr#1}}} +\def\fr#1#2{{#1\over #2}} +\def\var{\mathop{\rm var}\nolimits} +\def\cov{\mathop{\rm cov}\nolimits} +\def\infint{\int_{-\infty}^\infty} +\def\pa#1#2{\partial#1/\partial#2} + +\q2 + +%Let the mgf of $X_i$ be $M_{X_i}(x).$ +%The sum of $n$ $X_i$ has mgf $M_{X_i}(x)^n.$ +%This has variance $(M_{X_i}(x)^n)''(0)-(M_{X_i}(x)^n)'(0)^2 = +%(nM_{X_i}(x)^{n-1}M_{X_i}'(x))'(0)-n^2\mu^2 = +%n(n-1)M_{X_i}(0)^{n-2}M_{X_i}'(0)^2 + nM_{X_i}(0)^{n-1}M_{X_i}''(0) +%-n^2\mu^2 = n(n-1)\mu^2 + n\sigma^2 - n^2\mu^2 = n\sigma^2 - n\mu^2.$ + +%The mgf of $\overline X$ is $$M_{\overline X}(x)=e^{tn^{-1}}M_{X_i}(x)^n. +%\var\overline X = (e^{tn^{-1}}(n^{-1}M_{X_i}(x)^n+nM_{X_i}(x)^{n-1}M_{X_i}'(x)^n))' $$ + +$$\E\left(\fr1{n-1}\sum_{i=1}^n(X_i-\overline X)^2\right) += \E\left(\fr1{n-1}\sum_{i=1}^n(X_i-\mu - (\overline X - +\mu))^2\right)$$$$ += \E\left(\fr1{n-1}\sum_{i=1}^n((X_i-\mu)^2-2(X_i-\mu)(\overline X-\mu) ++ (\overline X-\mu)^2)\right)$$$$ += \E\left(\fr1{n-1}\right) += \E\left(\fr1{n-1}(\sum_{i=1}^n(X_i-\mu)^2-n(\overline X-\mu)^2)\right) += \fr1{n-1}(n\sigma^2 - n\E(\overline X-\mu)^2)$$$$ += \fr1{n-1}(n\sigma^2 - n\E(({1\over n}(X_1-\mu)+\cdots+(X_n-\mu))^2) += \fr1{n-1}(n\sigma^2 - n\E(({1\over n}(X_1-\mu)+\cdots+(X_n-\mu))^2) +$$$$ += \fr1{n-1}(n\sigma^2 - {1\over n} +(\E((X_1-\mu)^2)+\cdots+\E((X_n-\mu)^2) + \E((X_1-\mu)(X_2-\mu))+\cdots) += \fr1{n-1}(n\sigma^2 - \sigma^2) = \sigma^2.$$ +Note $\E((X_i-\mu)(X_j-\mu)) = \E(X_i-\mu)\E(X_j-\mu) = 0,$ when $i\neq +j,$ by independence. + +\q3 + +$1 = \E(S_n/S_n) = n\E(X_1/S_n) \to \E(X_1/S_n) = 1/n,$ using linearity +and symmetry. +$\E(S_m/S_n) = m\E(X_1/S_n) = m/n.$ +However, it is not necessary that $\E(X_k/S_n) \neq \E(X_1/S_n)$ for +$k>n,$ so the equality doesn't necessarily hold for $m>n.$ + +\q8 + +The mgf is the product of the sum's components' mgf, or in other words +$M_{X_1}(x)^n$ for $N=n.$ +$M_U(ln(s)) = \E(e^{\ln(s)X}) = \E(s^X) = G_U(s),$ and the general mgf +is $G_N(M_{X_1}(x)) = M_N(\ln(M_{X_1}(x))).$ + +\q10 + +Expanding $\cov(X,Y) = \E(XY)-\E(X)\E(Y)$ gives +$$\cov(X,Y) = \E((X_1+\cdots+X_n)(Y_i+\cdots+Y_n))-\E(X_1+\cdots+X_n) +\E(Y_1+\cdots+Y_n),$$ +becomes, by linearity, +$$\cov(X,Y) = \E(X_1Y_1)+\cdots+\E(X_1Y_n)\cdots+\E(X_nY_n) - (\E X_1 + +\cdots + \E X_n)(\E Y_1 + \cdots + \E Y_n)$$ +$$= \E(X_1Y_1) + \E(X_2Y_2) + \cdots + \E(X_nY_n),$$ +by independence for $X_i,Y_j:i\neq j.$ + +By the earlier theorem, since each game is independent and identical, +$\cov(X,Y) = n\cov(X_1,Y_1).$ +$$\cov(X_1,Y_1) = \E(XY) - \E(X)\E(Y) = 2pq - (2p^2 + 2pq)(2q^2 + 2pq) = +2pq - 4p^2q^2 - 4p^3q - 4p^2q^2 - 4pq^3$$$$= 2pq - 4pq(2pq+p^2+q^2) = -2pq.$$ +So $\cov(X,Y) = -2npq.$ + +\q14 + +The coupon collecting time to all coupons is the sum of geometric +distributions with parameters $p=c/c,(c-1)/c\ldots1/c.$ +The moment generating function of a geometric distribution is +$$\sum_x^\infty e^{tx}\Pr(X=x) = \sum_x^\infty e^{tx}pq^x = +\sum_x^\infty p(e^tq)^x = {p\over 1-e^tq}.$$ + +The moment generating function is therefore the product of this series +of geometric moment generating functions: +$${c!\over c^c}{1\over(1-e^t)(1-2e^t)\cdots(1-ce^t)}$$ + +\q17 + +$$f(x) = {1\over2}e^{-|x|} = {1\over2\pi}\infint e^{-itx}\phi(t)dt = +{1\over2\pi}\infint e^{-itx}{1\over1+t^2}dt = +{1\over2\pi}\infint -e^{itx}{1\over1+t^2}dt = +{1\over2}e^{-|x|},$$ +based on 7.80, using $\phi(t) = {1\over1+t^2}.$ + +\q18 + +The characteristic function of the Cauchy distribution is $e^{-|t|}.$ +$$M_{A_n}(t) = \E(e^{itn^{-1}(X_1+\cdots+X_n)}) = +\root n\of{M_{X_1}(t)^n} = M_{X_1}(t).$$ + +\q20 + +%deeply unsure + +By applying the partition theorem to $M(t) = \E(e^{tX}),$ we trivially +get $$M(t) = \sum_{k=1}^\infty \Pr(N=k)\E(e^{tX}|N=k).$$ + +Given these specific distributions, +$$\Pr(X\leq x) = \Pr(U_1\leq x)\cdots\Pr(U_k\leq x) = x^n \to +f_X(x) = nx^{n-1} \to \E(e^{tX}|N=k) = \sum_{j=0}^\infty {1\over j!}t^j +\E(n^jx^{j(n-1)}) = \sum_{j=0}^\infty {1\over +j!}t^jn^j{1\over1+j(n-1)}.$$ +using $\E(e^{tX}) = \sum_{n=0}^\infty {t^j\over j!}\E(X^j).$ + +\bye |