diff options
author | Holden Rohrer <hr@hrhr.dev> | 2021-05-05 19:03:09 -0400 |
---|---|---|
committer | Holden Rohrer <hr@hrhr.dev> | 2021-05-05 19:03:09 -0400 |
commit | 61b48fd8baae321daf294ebf670ef4906240d260 (patch) | |
tree | 76466290927faca6f32ace2ca79c6e079d935208 /kang/hw5.tex | |
parent | 7b1a85146c6fb0d4b2232aa7bde1ec192b42599a (diff) |
homeworks and attendance quizzes for kang
Diffstat (limited to 'kang/hw5.tex')
-rw-r--r-- | kang/hw5.tex | 185 |
1 files changed, 185 insertions, 0 deletions
diff --git a/kang/hw5.tex b/kang/hw5.tex new file mode 100644 index 0000000..977cbed --- /dev/null +++ b/kang/hw5.tex @@ -0,0 +1,185 @@ +\def\Re{\mathop{\rm Re}\nolimits} +\def\Im{\mathop{\rm Im}\nolimits} +\def\Log{\mathop{\rm Log}\nolimits} +\let\rule\hrule +\def\hrule{\medskip\rule\medskip} + +%page 95 +\noindent{\bf 8.} + +$$\log z = i\pi/2 \to z = e^{i\pi/2} = i,$$ by Euler's formula. + +\hrule +%page 99 +\noindent{\bf 2.} + +\noindent{\it (a)} + +Where $z_n = r_ne^{i\theta_n},$ for all values of $\theta_n,$ +$$\log\left({z_1\over z_2}\right) = \ln|z_1/z_2| + i\arg(z_1/z_2)$$$$ = +(\ln(r_1) - \ln(r_2)) + i(\theta_1-\theta_2) = (\ln(r_1) + i\theta_1) - +(\ln(r_2) + i\theta_2) = \log z_1 - \log z_2,$$ +because $\ln(a-b) = \ln a - \ln b$ and $\arg(z_1/z_2) = \arg(z_1) - +\arg(z_2).$ + +\noindent{\it (b)} + +$1/z = \overline z/|z|^2.$ $$\log(1/z) = \ln|1/z| + i\arg(1/z) = +- \ln|z| - i\arg z = - (\ln|z| + i\arg z) = -\log(z),$$ so +$$\log(z*(1/z)) = \log(z) + \log(1/z) = \log(z) - \log(z) = 0.$$ + +\hrule +%page 103 +\noindent{\bf 2.} + +\noindent{\it (a)} + +The principal value of $(-i)^i$ is $e^{i\Log(i)} = e^{i\pi/2}.$ + +\noindent{\it (b)} + +The base of this power function is $e^(1-2\pi/3) = b \to \Log(b) = 1-2\pi i/3.$ +This gives a principal value of $e^{3\pi i(1-2\pi/3)} = e^{3\pi i - 2\pi^2} = +-e^{2\pi^2}.$ + +\noindent{\it (c)} + +The principal value of $(1-i)^{4i}$ is $e^{\Log(1-i)4i} = +e^{(4i)(\ln(2)/2 - \pi/4)} = e^{(2\ln(2)i)-\pi} = e^{-\pi}(\cos(2\ln(2)) ++ i\sin(2\ln(2))).$ + +\noindent{\bf 8.} + +\noindent{\it (a)} + +$$z^{c_1}z^{c_2} = e^{c_1\Log(z)}e^{c_2\Log(z)} = e^{\Log(z)(c_1+c_2)} = +z^{c_1+c_2}.$$ + +\noindent{\it (b)} + +$${z^{c_1}\over z^{c_2}} = {e^{\Log(z)c_1}\over e^{\Log(z)c_2}} = +e^{c_1\Log z - c_2\Log z} = e^{\Log(z)(c_1-c_2)}.$$ + +\noindent{\it (c)} + +$$(z^c)^n = (e^{c\Log z})^n = e^{nc\Log z} = z^{cn}.$$ + +\hrule +%page 107 +\noindent{\bf 3.} + +$$\sin(z+z_2) = \sin z \cos z_2 + \cos z \sin z_2 \to +\cos(z+z_2) = \cos z \cos z_2 - \sin z \sin z_2 \to +\cos(z_1+z_2) = \cos z_1\cos z_2-\sin z_1\sin z_2.$$ + +\noindent{\bf 7.} +% need to do more here + +$\sin z = \sin x \cosh y + i\cos x \sinh y.$ +$\cos z = \cos x \cosh y - i\sin x \sinh y.$ + +$$|\sin z|^2 = (\sin x\cosh y)^2 + (\cos x\sinh y)^2 += \sin^2 x(1+\sinh^2 y) + \cos^2 x\sinh^2 y = +\sin^2 x + \sinh^2 y.$$ + +$$|\cos z|^2 = \cos^2 x \cosh^2 y + \sin^2 x \sinh^2 y += \cos^2 x \cosh^2 y + (1-\cos^2 x)\sinh^2 y += \sinh^2 y + \cos^2 x.$$ + + +\noindent{\bf 12.} + +$\sin z$ and $\cos z$ are real with $z$ on the real axis. +Therefore, $\overline{\sin z} = \sin\overline z$ and $\overline{\cos z} += \cos\overline z.$ + +\hrule +%page 111 +\noindent{\bf 6.} + +\noindent{\it (a)} +$$|\cosh z|^2 = \sinh^2 x + \cos^2 y \to |\sinh x|^2 \leq |\cosh z|^2 +\to |\sinh x|\leq |\cosh z|.$$ +$$|\cosh z|^2 = \cosh^2 x + cos^2 y \to |\cosh z|^2 \leq \cosh^2 x \to +|\cosh z| \leq \cosh x,$$ +because $\cosh x > 0.$ + +\noindent{\it (b)} +%9b of sec 38 would probably be good + +$$|\sinh y| \leq |\cos z| \leq \cosh y.$$ +We change $z$ to $z' = zi,$ so $y$ becomes $x.$ +$$|\sinh x| \leq |\cosh z| \leq \cosh x.$$ + +\noindent{\bf 16.} +$$\sinh z = \sinh x \cos y + i\cosh x \sin y.$$ +$$\cosh z = \cosh x \cos y + i\sinh x \sin y.$$ + +\noindent{\it (a)} +$$\sinh z = i = \sinh x\cos y + i\cosh x\sin y \to 1 = \cosh x\sin y = +\sin y,$$ +because all zeroes of $\cosh x$ are on imaginary axis, so +$x = 0 \to \cosh x = 1.$ + +$\sin y = 1$ on $y = 2n\pi + \pi/2 \to z = (2n\pi + \pi/2)i.$ + +\noindent{\it (b)} +$$\cosh z = \cosh(yi) = 1/2 = \cos y \to y = (2n\pi \pm \pi/3)i.$$ + +\hrule +%page 113 +\noindent{\bf 1.} +%learn the derivation of inverse sin + +\noindent{\it (c)} + +$$\cosh^{-1}(-1) = \log\left[-1+0^{1/2}\right] = \log(1) += 2n\pi i+\pi.$$ + +\hrule +%page 119 +\noindent{\bf 2.} + +\noindent{\it (a)} + +$\int_0^1 (1+it)^2 dt = \int_0^1 1 + 2it - t^2 dt = +[t + it^2 - t^3/3]_0^1 = 1 + i - 1/3 = 2/3 + i.$ + +\noindent{\it (b)} + +$\int_1^2 \left({1\over t} -i\right)^2 dt = \int_1^2 {1\over t^2} - +{2i\over t} - 1 dt = [-{1\over t} - 2i\ln t - t]_1^2 = +1-{1\over 2} - 2i\ln2 + 2 - 1 = 3/2 - 2i\ln2.$ + +\noindent{\it (c)} + +$\int_0^{\pi/6} e^{i2t} dt = \int_0^{\pi/6} \cos(2t) + i\sin(2t) dt = +(1/2)[\sin(2t) - i\cos(2t)]_0^{\pi/6} (1/2)[\sqrt3/2 - i/2].$ + +\noindent{\it (d)} + +$\int_0^\infty e^{-zt} dt = \lim_n\to\infty [-e^{-zt}/z]_0^n = 1/z - +\lim_t\to\infty e^{-zt}/z = 1/z.$ + +\hrule +%page 123 +\noindent{\bf 1.} +%do no 2 to confirm knowledge of jordan curve + +\noindent{\it (a)} + +This is true for a real-valued function, so +$$\int_{-b}^{-a} u(-t) dt + i\int_{-b}^{-a} v(-t) = \int_a^b u(t) dt + +i \int_a^b v(t) dt,$$ +because $u$ and $v$ are real-valued, so the corresponding imaginary and +real components are equal. + +\noindent{\it (b)} + +This is true of a real function on $(a,b),$ so $$\int_a^b u(t) dt = +\int_\alpha^\beta u(\phi(\tau))\phi'(\tau) d\tau,$$ +and similarly for $v(t),$ so +$$\int_a^b u(t)+iv(t) dt = +\int_\alpha^\beta (u(\phi(\tau)) + iv(\phi(\tau))\phi'(\tau) d\tau.$$ + +\bye |