diff options
Diffstat (limited to 'kang')
-rw-r--r-- | kang/att1 | 33 | ||||
-rw-r--r-- | kang/att1.png | bin | 0 -> 24029 bytes | |||
-rw-r--r-- | kang/att2 | 14 | ||||
-rw-r--r-- | kang/att3.tex | 24 | ||||
-rw-r--r-- | kang/att4 | 19 | ||||
-rw-r--r-- | kang/att5 | 3 | ||||
-rw-r--r-- | kang/att5.tex | 32 | ||||
-rw-r--r-- | kang/att6.tex | 25 | ||||
-rw-r--r-- | kang/hw10.tex | 153 | ||||
-rw-r--r-- | kang/hw11.tex | 175 | ||||
-rw-r--r-- | kang/hw12.tex | 79 | ||||
-rw-r--r-- | kang/hw13.tex | 126 | ||||
-rw-r--r-- | kang/hw14.tex | 103 | ||||
-rw-r--r-- | kang/hw2.tex | 166 | ||||
-rw-r--r-- | kang/hw3.tex | 84 | ||||
-rw-r--r-- | kang/hw4.tex | 163 | ||||
-rw-r--r-- | kang/hw5.tex | 185 | ||||
-rw-r--r-- | kang/hw6.tex | 64 | ||||
-rw-r--r-- | kang/hw7.tex | 92 | ||||
-rw-r--r-- | kang/hw8.tex | 98 | ||||
-rw-r--r-- | kang/hw9.tex | 185 |
21 files changed, 1823 insertions, 0 deletions
diff --git a/kang/att1 b/kang/att1 new file mode 100644 index 0000000..bc3ea17 --- /dev/null +++ b/kang/att1 @@ -0,0 +1,33 @@ +1) + +(z^2+3)/((z+1)(z^2+5)) + +Product rule, chain rule, and power rule can be used to find a +derivative except where the function is undefined, (z+1)(z^2+5) = 0. +These are z = -1, \pm\sqrt{5} + +2) + +f(x+iy) = xy + iy + +Ux = y +Uy = x +Vx = 0 +Vy = i + +Ux = Vy? y is a real number, so it is not equal to i. This is, +therefore, not analytic. + +3) + +f(z) = z^2 = x^2 + 2xyi - y^2 + +Ux = 2x +Uy = -2y +Vx = 2y +Vy = 2x + +Ux = Vy? Yes. +Uy = -Vx? Yes. + +This function is analytic everywhere on the plane. diff --git a/kang/att1.png b/kang/att1.png Binary files differnew file mode 100644 index 0000000..f591ac1 --- /dev/null +++ b/kang/att1.png diff --git a/kang/att2 b/kang/att2 new file mode 100644 index 0000000..25dc428 --- /dev/null +++ b/kang/att2 @@ -0,0 +1,14 @@ +Semicircle of sqrt(z) +value + +i 2^2 / {3/2 i} ( e^{3/2 i pi} - 1 ) + + +z + 1 +------ +(z^2+4)(z^2+9) +upper bound + +(r+1) pi r +------ +|r^2-1||r^2-1| diff --git a/kang/att3.tex b/kang/att3.tex new file mode 100644 index 0000000..2afdb9a --- /dev/null +++ b/kang/att3.tex @@ -0,0 +1,24 @@ +\noindent 1. Over $|z| = 1,$ find the integral of $e^{2z}/z^4$ + +Given $f(z) = e^{2z},$ $\int_C {f(z) dz\over z^4} = {2\pi i\over 3!} +f^{(3)}(0) = {8\pi i\over 3}$ + +\noindent 2. Prove theorem. + +$|z-z_0|$ is, on $C_R,$ exactly $R.$ Therefore, the upper bound of the +absolute value of the nth derivative of $f$ at $z_0$ becomes +$${n! \over 2*\pi*i R^{n+1}} |\int_C f(z)dz|.$$ + +$$|\int_C f(z) dz| < \int_C |f(z)| dz \leq 2\pi RM_R,$$ +so $$|f^{(n)}(z_0)| \leq {n!M_R \over R^n}.$$ + +\noindent 3. If f is entire and bounded, it is a constant + +$|f(z)| <= M_R$, where $M_R$ is some number. + +This means the theorem from question 2 applies, and because $R$ can be +arbitrarily large, the first derivative at $z_0$ (any point in the +plane) must be bounded by $n!M_R/R \to 0$ as $R\to\infty$. This means +the function is constant. + +\bye diff --git a/kang/att4 b/kang/att4 new file mode 100644 index 0000000..8c19a35 --- /dev/null +++ b/kang/att4 @@ -0,0 +1,19 @@ +Q1) Find power series + +f(z) = e^{-z}/z^2 for 0<|z|<\infty + +e^{-z} = 1 - z + z^2/2! - z^3/3! + z^4/4! ... +f(z) = 1/z^2 - 1/z + 1/2! - z/3! + z^2/4! ... + +Q2) + +f(z) = {1+2z^2 \over z^3 + z^5} |z|<1 + = {1 \over z^3(1+z^2)} + {2\over z(1+z^2)} + +{1\over (1+z^2)} = 1 - z^2 + z^4 - z^6 ... + +{1\over z^3(1+z^2)} = 1/z^3 - 1/z + z - z^3 ... +{2\over z(1+z^2)} = 2/z - 2z + 2z^3 - 2z^5 ... + +f(z) = +1/z^3 + 2/z - 1/z - 2z + z + 2z^3 - z^3 - 2z^5 ... diff --git a/kang/att5 b/kang/att5 new file mode 100644 index 0000000..867b76a --- /dev/null +++ b/kang/att5 @@ -0,0 +1,3 @@ +- favorite fruit and greek letter + +- how is life diff --git a/kang/att5.tex b/kang/att5.tex new file mode 100644 index 0000000..7c0cc02 --- /dev/null +++ b/kang/att5.tex @@ -0,0 +1,32 @@ +Q1) + +$$f(z) = {4z-5\over z(z-1)}.$$ + +To determine the residue of $|z|=2,$ we sum the residues of interior +poles ($z=0$ and $z=1.$) + +Starting with $z=0,$ +$$f(z) = -{4z-5\over z}\cdot{1\over 1-z} = (5/z-4)(1+z+z^2+\ldots),$$ +giving a residue of $b_1 = 5.$ + +Then, $z=1,$ +$$f(z) = {4(z-1)-1\over z-1}\cdot{1\over 1-(1-z)} = (4 - +1/(z-1))(1-(z-1)+(z-1)^2+\ldots),$$ +giving a residue of $b_1 = -1.$ + +The sum of these residues is $4,$ so the value of the given integral is +$2\pi i\cdot4 = 8\pi i.$ + +Q2) + +$$f(z) = {z^3 + 2z\over (z-i)^3}.$$ + +The residue at $z=i$ is $g''(i)/2!$ where $g(z) = z^3 + 2z,$ giving +$g''(i)/2! = (6i)/2! = 3i.$ + +Q3) + +I'm going to sleep in, and I think I'll be able to actually relax on +Wednesday. + +\bye diff --git a/kang/att6.tex b/kang/att6.tex new file mode 100644 index 0000000..592ccc0 --- /dev/null +++ b/kang/att6.tex @@ -0,0 +1,25 @@ +\noindent{\bf Q1)} + +$$w = {i-z\over i+z} = -{z-i\over z+i} = e^{i\pi}{z-i\over z-\overline i} +.$$ + +This, therefore, puts the upper half-plane into a circle of radius 1. + +\noindent{\bf Q2)} + +$$w = {z-1\over z+1} = {x+iy-1\over x+iy+1} = {(x-1+iy)(x+1-iy)\over +(x+1)^2+y^2} = {x^2 - 1 + 2iy + y^2\over (x+1)^2+y^2}.$$ + +$$u = {x^2 - 1 + y^2\over (x+1)^2 + y^2},\quad v = {2y\over(x+1)^2+y^2} +.$$ + +$$y > 0 \to v > 0,$$ +because, with $x = -1,$ $v = 2/y,$ which maps positive y to positive v. + +\noindent{\bf Q3)} + +They are different because the transformation in Q2 isn't the same as +Q1. It could be rewritten as a rotation of $pi/2$ then a transform +similar to Q1, but this does not correspond. + +\bye diff --git a/kang/hw10.tex b/kang/hw10.tex new file mode 100644 index 0000000..198067a --- /dev/null +++ b/kang/hw10.tex @@ -0,0 +1,153 @@ +\def\Res{\mathop{\rm Res}} +\let\rule\hrule +\def\hrule{\medskip\rule\medskip} + +%page 237 +\noindent{\bf 3.} + +With +$$f(z) = {4z-5\over z(z-1)},$$ + +$$\int_C f(z)dz = -2\pi i\Res_{z=\infty}f(z) = +2\pi i\Res_{z=0}{1\over z^2}f\left({1\over z}\right) = +2\pi i\Res_{z=0}{z(4 - 5z) \over z^2(1 - z)}.$$ + +$${z(4-5z)\over z^2(1-z)} = (4/z-5)(1+z+z^2+\cdots) \to b_1 = 4.$$ +Therefore, the value of the integral is $8\pi i.$ + +\hrule +%page 242 +\noindent{\bf 1.} + +\noindent{\it (a)} + +$$f(z) = z\exp\left({1\over z}\right) = z\left(1 + {1\over z} + +{1\over 2z^2} + \cdots\right),$$ +giving principal part +$${1\over 2z} + {1\over 6z^2} + \cdots,$$ +meaning that $z=0$ is an essential singular point. + +\noindent{\it (b)} + +$$f(z) = {z^2\over 1+z} = {z^2\over 1 - (-z)} = z^2 - z + 1 - {1\over z} ++ {1\over z^2} + \cdots,$$ +giving principal part +$$-{1\over z} + {1\over z^2} + \cdots,$$ +demonstrating an essential singular point at $z=0.$ + +\noindent{\it (c)} + +$$f(z) = {\sin z\over z} = 1 - {z^2\over 3!} + {z^4\over 5!} - {z^6\over +7!}.$$ +The principal part is $0,$ so $z=0$ is a removable singular point. + +\noindent{\it (d)} + +$$f(z) = {\cos z\over z} = {1\over z} - {z\over 2!} + {z^3\over 4!} + +\cdots,$$ +giving principal part $1/z,$ meaning $z=0$ is a simple pole. + +\noindent{\it (e)} + +$$f(z) = {1\over (2-z)^3} = -{1\over (z-2)^3}$$ +is a complete Laurent series, and also its principal part, telling us +there is a pole of order 3 at $z=2.$ + +\noindent{\bf 3.} + +\noindent{\it (a)} + +If $f(z_0) \neq 0,$ $f(z)$ has Taylor series representation $a_0 + +{a_1(z-z_0)\over 1!} + {a_2(z-z_0)^2\over 2!} + {a_3(z-z_0)^3\over 3!} ++ \cdots.$ Therefore, $g(z)$ has Laurent series representation +${a_0\over z-z_0} + a_1 + {a_2(z-z_0)\over 2!} + {a_3(z-z_0)^3\over 3!},$ +evidencing a simple pole. + +\noindent{\it (b)} + +Similarly, if $f(z_0) = 0,$ $g(z)$ has Taylor series ${a_1\over 1!} + +{a_2(z-z_0)\over 2!} + {a_3(z-z_0)^2\over 3!},$ with principal part $0$ +and a removable singular point. + +\hrule +%page 246 +\noindent{\bf 3.} + +\noindent{\it (a)} + +$\sinh z/z = f(z)$ is non-zero and analytic at $z=0,$ meaning that +$g(z) = \sinh z/z^4 = f(z)/z^3$ has a pole of order 3 at $z=0.$ +The Laurent series of $\sinh z/z^4$ is ${1\over z^3} + {1\over 3!z} + +{z\over 5!} + \cdots,$ giving a residue of $1/6.$ + +\noindent{\it (b)} + +$${1\over z(e^z - 1)} = {1\over z(1+z+{z^2\over 2}+{z^3\over +6}+\cdots-1)} = {1\over z^2(1 + {z\over 2} + {z^2\over 6} + \cdots)} = +{1\over z^2}{1\over 1 - (-{z\over 2} - {z^2\over 6} - \cdots)},$$ +and by the standard $1/(1-z)$ expansion since this series is less than 1 +(it equals ${e^z - 1\over z}-1,$ which is near 0 about $z=0,$ which can +be verified by L'hospital's rule), +$$ = {1\over z^2} - {1\over 2z} - {1\over 6} + \cdots$$ + +This is a residue of $-1/2.$ + +\noindent{\bf 5.} + +\noindent{\it (a)} + +$|z|=2$ contains the singular point at $z=0,$ and $f(z)$ can be defined +as +$$\phi(z)\over z^3$$ where $\phi(z) = 1/(z+4),$ which is analytic within +the region. The residue is $\phi''(0)/2! = {2/(0+4)^3\over 2} = 1/64.$ +This gives the integral a value of $2\pi i/64 = \pi i/32.$ + +\noindent{\it (b)} + +This region contains both singularities at $z=0$ and $z=-4,$ and its +residue is the sum of theirs. +We have already evaluated the residue at $z=0,$ so we will now evaluate +the residue at $z=-4.$ +$$f(z) = {{1\over z^3}\over z+4} = {\phi(z)\over z+4}.$$ +This has residue $\phi(-4) = -1/64.$ +With the residue at $z=0,$ this gives a sum total of $0.$ + +\noindent{\bf 6.} + +$C$ contains singularities at $-i,$ $0,$ and $i.$ +At $z=0,$ +$$f(z) = {\phi(z)\over z},$$ +with +$$\phi(z) = {\cosh \pi z\over z^2+1}.$$ +This tells us the residue is $\phi(0) = \cosh 0/1 = 1.$ + +Similarly, $z=i$ has +$$f(z) = {\phi(z)\over z-i},$$ +with +$$\phi(z) = {\cosh \pi z\over z(z+i)} \to \phi(i) = +{\cosh(\pi i)\over -2} = {1\over 2}.$$ + +And $z=-i$ has +$$f(z) = {\phi(z)\over z+i},$$ +with +$$\phi(z) = {\cosh \pi z\over z(z-i)} \to \phi(i) = +{\cosh(-\pi i)\over 2} = {1\over 2}.$$ + +The sum residue is $2,$ giving the integral a value of $2\cdot 2\pi i = +4\pi i.$ + +\iffalse +$C$ contains all singularities, so the integral can be determined as +$2\pi i\Res_{z=\infty} f(z).$ + +$${1\over z^2}f\left({1\over z}\right) = +{z^3\cosh(\pi/z) \over 1+z^2} = +{z^3\over 1+z^2}\left(1 + {(\pi/z)^2\over 2!} + {(\pi/z)^4\over +4!}\right) = + +%{1\over 1+z^2}\left(z^3 + {z\pi^2\over 2!} + {\pi^4\over 4!z} + +%{\pi^6\over 6!z^3} + \cdots\right) +$$ +\fi + +\bye diff --git a/kang/hw11.tex b/kang/hw11.tex new file mode 100644 index 0000000..d55a9e8 --- /dev/null +++ b/kang/hw11.tex @@ -0,0 +1,175 @@ +\def\Res{\mathop{\rm Res}} +\def\Re{\mathop{\rm Re}\nolimits} +\def\Im{\mathop{\rm Im}\nolimits} +\let\rule\hrule +\def\hrule{\goodbreak\medskip\rule\medskip\goodbreak} + +%page 253 + +\noindent{\bf 4.} + +\noindent{\it (a)} + +$$(\sec z)^{-1} = \cos z = q(z).$$ +$$p(z) = z.$$ +$$p(\pi/2+n\pi) = \pi/2 + n\pi = z_n\neq 0, \qquad q(\pi/2+n\pi) = 0, +\qquad q'(\pi/2+n\pi) = -\sin(\pi/2+n\pi) = (-1)^{n+1} \neq 0,$$ +so this is a simple pole with residue +$$\Res_{z=z_n}(z\sec z) = (-1)^nz_n.$$ + +\noindent{\it (b)} + +Similarly, +$$(\tanh(z)) = {\sinh z\over\cosh z},$$ +giving $p(z) = \sinh z$ and $q(z) = \cosh z,$ +which forms a simple pole because +$$p(z_n) = -\sin(\pi/2 + n\pi) = (-1)^n, \qquad q(z_n) = \cos(\pi/2 + +n\pi) = 0, \qquad q'(z_n) = \sin(\pi/2 + n\pi) = (-1)^n.$$ + +$$p(z_n)/q'(z_n) = (-1)^n/(-1)^n = 1 = \Res_{z=z_n}\tanh z$$ + +\noindent{\bf 6.} + +The value of this integral is equal to $2\pi i$ times the sum of the +residues of $$f(z) = {1\over z^2\sin z}$$ within the square. +These are $z^2 = 0 \to z = 0$ and $\sin z = 0 \to z = z_n = \pi n,$ +where $-N\leq n\leq N.$ +This set includes $z = 0.$ + +$$f(z) = {p(z)\over q(z)}$$ +where $p(z) = 1$ and $q(z) = z^2\sin z.$ $p(z_n)\neq 1,$ $q(z_n) = 0,$ +and $q(z_n) = z_n^2\cos z_n + 2z_n\sin z_n = z_n^2(-1)^n \neq 0$ (except +at $z_n = 0.$) +The sum of residues within the range of $-N\leq n\leq N$ and $n\neq 0$ +is $$\sum_{n=1}^N (-1)^nz_n^{-2}+z_{-n}^{-2} = \sum_{n=1}^N {2(-1)^n\over(\pi +n)^2}.$$ + +At $z_n = 0,$ +$$f(z) = {\phi(z)\over z^3},$$ +where $\phi(z) = {z\over\sin z},$ +This gives a residue at 0 of ${\phi''(0)\over 3!}$. +$$\phi''(z) = -{\cos z\over(\sin z)^2} - {\cos z - z\sin z\over(\sin z)^2} ++ {2z(\cos z)^2\over(\sin z)^3} = +{-2\cos z\sin z + z(\sin z)^2 + 2z(\cos z)^2 \over (\sin z)^3}.$$ +$$\phi''(0) = 1,$$ +found by noting that, near 0, $\sin z\to z$ and $\cos z\to 1.$ +This gives a 1/6 residue. + +Together, this makes +$$\int_{C_N} {dz\over z^2\sin z} = 2\pi i\left[{1\over 6}+2\sum_{n=1}^N +{(-1)^n\over\pi^2 n^2}\right].$$ + +If the integral tends to 0 as $N\to\infty,$ +$$0 = {1\over 6}+2\sum_{n=1}^N{(-1)^n\over \pi^2 n^2} \to +-{\pi^2\over 12} = \sum_{n=1}^N{(-1)^n\over n^2},$$ +meaning the series tends to $\pi^2/12.$ + +\noindent{\bf 10.} + +Because $p(z)/q(z)$ has a pole of order $m,$ +$${p(z)\over q(z)} = {\phi(z)\over (z-z_0)^m},$$ +where $\phi(z)$ is analytic and non-zero at $z_0,$ further giving +$$q(z) = {p(z)\over\phi(z)}(z-z_0)^m,$$ +and because $\phi(z)$ is nonzero, $p(z)/\phi(z)$ is analytic, and this +tells us that $q(z)$ has a zero of order $m$ because $q(z) = +g(z)(z-z_0)^m$ where $g(z)$ is a nonzero analytic function. + +\hrule +%page 264 + +\noindent{\bf 1.} + +$$z^2+1 = (z-i)(z+i).$$ +The only singularity above the real axis is $z = i.$ +This point is a simple pole, so its residue is $1/(i+i) = -i/2.$ +This gives the value of the integral as $\pi i*(-i/2) = \pi/2$ (since +the integrand is even and $\pi R/(R^2-1)$ vanishes to 0 as $R$ tends to +infinity). + +\noindent{\bf 4.} + +The singularities of this integrand are, like in the example, the sixth +roots of $-1,$ and they are simple poles, but the residues $B_k$ +evaluate instead to $$B_k = \Res_{z=c_k} {z^2\over z^6+1} = {c_k^2\over +6c_k^5} = {c_k^3\over 6c_k^6} = -{c_k^3\over 6}.$$ +$$c_k = e^{i(\pi/6+k\pi/3)} \to c_k^3 = e^{i(\pi/2+k\pi)} = i(-1)^k.$$ +Since $k\in\{0,1,2\},$ the residues sum to $-i/6,$ giving the value of +the integral to be $\pi i*(-i/6) = -\pi/6,$ (again valid because the +integrand is even and $\pi R^3/(R^6-1)$ vanishes to 0 as $R$ tends to +infinity). + +\noindent{\bf 8.} + +$$q(z)=(z^2+1)(z^2+2z+2) = (z+i)(z-i)(z+(1+i))(z+(1-i)).$$ +The singularities above the real axis are simple poles $z = i, -1+i.$ +At these singularities, the residues $p(z)/q'(z)$ are respectively +$${i\over (2i)(1+2i)(1)} = {1-2i\over10}$$ and $${-1+i\over +(-1+2i)(-1)(2i)} = {-1+3i\over 10}.$$ + +$M_R = {R\over (R^2-1)(R^2-2)} \to R\pi M_R = {R^2\over +(R^2-1)(R^2-2)},$ +so $\int_{C_R}f(x)dx = 0$ as $R$ tends to infinity. +This allows us to determine the Cauchy principal value of the integral +to be $2\pi i\cdot i/10 = -\pi/5.$ + +\hrule +%page 273 + +\noindent{\bf 1.} + +$$\int_{-\infty}^\infty {\cos x\thinspace dx\over (x^2+a^2)(x^2+b^2)} = +\Re \int_{-\infty}^\infty {e^{ix}dx\over (x^2+a^2)(x^2+b^2)}.$$ +The singularities in the upper half of the plane are simple poles +$x=ai, x=bi.$ +These have residues $${e^{-a}\over (2ai)(-a^2+b^2)}$$ and $$e^{-b}\over +(2bi)(-b^2+a^2),$$ respectively. +$$\int_{-\infty}^\infty {e^{ix}dx\over (x^2+a^2)(x^2+b^2)} += 2\pi iB - \int_{C_R} f(z)e^{iz} dz.$$ +This last integral tends to $0$ by Jordan's lemma because $f(z)$ has +maximum value ${1\over (R^2-a^2)(R^2-b^2)},$ which tends to 0 as $R$ +tends to infinity where $R>a$ and $R>b.$ +$$2\pi iB = 2\pi i\left({e^{-a}/2a-e^{-b}/2b \over i(a^2-b^2)}\right) = +\pi({e^{-a}/a - e^{-b}/b \over (a^2-b^2)}),$$ +proving the integral formula. + +\noindent{\bf 5.} + +$$\int_{-\infty}^\infty {x^3\sin ax\over x^4+4}dx = \Im +\int_{-\infty}^\infty {x^3e^{iax}\over x^4+4}dx.$$ + +$$\int_{-\infty}^\infty {x^3e^{iax}\over x^4+4}dx = 2\pi iB - \int_{C_R} +f(x)e^{iax}dx.$$ +Where $|x|>R>\sqrt 2,$ the maximum value of $f(x)$ is +$$M_R<{R^3\over R^4-4},$$ +which tends to $0$ as $R\to\infty,$ telling us the integral evaluates to +$0.$ +The singularities in the upper half of the plane are $c_k = \sqrt +2e^{i(\pi/4+k\pi/2)},$ where $k\in\{0,1\}.$ +These are simple poles, so they evaluate to $$p(c_k)/q'(c_k) = {c_k^3 +e^{iac_k}\over 4c_k^3} = e^{iac_k}/4 = +e^{ia\sqrt2 e^{i(\pi/4+k\pi/2)}}/4 = +$$$$ e^{ia\sqrt2(\cos(\pi/4+k\pi/2)+i\sin(\pi/4+k\pi/2))}/4 += e^{ia((-1)^k+i)}/4 += e^{a(i(-1)^k-1)}/4 += e^{-a}(\cos(a(-1)^k)+i\sin(a(-1)^k))/4,$$ +summing to $2e^{-a}\cos(a)/4.$ +Therefore, the integral evaluates to $2\pi ie^{-a}\cos a/2,$ +giving imaginary component (and value of the original integral) +$\pi e^{-a}\cos a.$ + +\noindent{\bf 8.} + +$$\int_{-\infty}^\infty {\sin x dx\over x^2+4x+5} = +\Im\int_{-\infty}^\infty {e^{ix} dx\over (x+(2+i))(x+(2-i))}$$ + +The only singularity in the upper half of the plane is $-2+i,$ +with a residue of +$$e^{-2i-1}\over 2i,$$ +giving the integral a value +${2\pi ie^{-2i-1}\over 2i} = \pi e^{-1-2i} = {\pi\over e}(\cos(-2)+i\sin(-2)),$ +giving an imaginary component $-\pi\sin(2)/e.$ + +This answer is valid because $f(z)$ tends to zero on $C_R$ as +$R\to\infty,$ where $$f(z) = {1\over z^2+4z+5}.$$ + +\bye diff --git a/kang/hw12.tex b/kang/hw12.tex new file mode 100644 index 0000000..041c817 --- /dev/null +++ b/kang/hw12.tex @@ -0,0 +1,79 @@ +\def\Re{\mathop{Re}\nolimits} +\def\Res{\mathop{Res}} +\let\rule\hrule +\def\fr#1#2{{#1\over#2}} +\def\hrule{\goodbreak\medskip\rule\medskip\goodbreak} + +% page 282 +\noindent{\bf 1.} + +With +$$f(z) = {e^{iaz} - e^{ibz}\over z^2},$$ +there is one singularity at 0, so by Cauchy-Goursat, +$$\int_{C_\rho} f(z)dz + \int_{C_R} f(z)dz + \int_{-\infty}^0 f(z)dz + +\int_0^\infty f(z)dz = 0,$$ +where $C_\rho$ is the upper semicircle about $z=0,$ of radius +$\rho\to0,$ and similar for $C_R$ where $R\to\infty.$ + +$$\int_{C_R} f(z)dz = \int_{C_R} {e^{iaz} - e^{ibz}\over z^2}dz += 0,$$ +by Jordan's lemma. +$$\int_{C_\rho} {e^{iaz} - e^{ibz} \over z^2} dz = -B_0\pi i = \pi(a-b),$$ +by the theorem in this section. +$$\int_{-\infty}^0 f(x)dx + \int_0^\infty f(x)dx = +-\int_0^\infty f(-x)dx + \int_0^\infty f(x)dx =$$$$ +\int_0^\infty {e^{iax} - e^{ibx} + e^{-iax} - e^{-ibx}\over x^2}dx +% logical discontinuity! It should maybe be - e^{-iax} + e^{-ibx}. += 2\int{\cos(ax)-\cos(bx)\over x^2}dx,$$ +which, by transformation of the original equality, gives +$$2\int{\cos(ax)-\cos(bx)\over x^2}dx = -\pi(a-b) \to \int f(x)dx = +{\pi\over2}(b-a).$$ + +\noindent{\bf 4.} + +$$f(z) = {z^{1/3}\over(z+a)(z+b)} = {e^{(1/3)\log z}\over(z+a)(z+b)}.$$ +$$\int_\rho^R {r^{1/3}\over (r+a)(r+b)}dr + +\int_{C_R} f(z)dz - \int_\rho^R {r^{1/3}e^{2i\pi/3}\over (r+a)(r+b)}dr + +\int_{C_\rho} f(z)dz = 2\pi i(\Res_{z=-a}f(z) + \Res_{z=-b}f(z)).$$ + +These residues are at simple poles and are therefore +$${a^{1/3}e^{\pi i/3}\over b-a}\qquad{\rm and}\qquad +{b^{1/3}e^{\pi i/3}\over a-b},$$ +respectively. + +$$\left|\int_{C_\rho} f(z)dz\right| \leq +{\rho^{1/3}\over(a+\rho)(b+\rho)}2\pi\rho \to 0$$ +$$\left|\int_{C_R} f(z)dz\right| \leq {R^{1/3}\over (R+a)(R+b)}2\pi R\to +0.$$ + +Therefore, rearranging the original equality, +$$(1-e^{2i\pi/3})\int_0^\infty {r^{1/3}\over (r+a)(r+b)}dr += 2\pi ie^{\pi i/3}{a^{1/3}-b^{1/3}\over b-a}$$ +$$\longrightarrow \int_0^\infty {x^{1/3}\over (x+a)(x+b)}dx = +{2\pi\over\sqrt 3}\cdot{\root 3 \of a - \root 3 \of b\over b - a}$$ + +\hrule +% page 287 + +\noindent{\bf 5.} + +$$\int_0^\pi {d\theta\over (a+\cos\theta)^2} = {1\over 2}\int_0^{2\pi} +{d\theta\over (a+\cos\theta)^2},$$ +by symmetry of the integrand, +$$=\fr12\int_C {1\over (a+{z+z^{-1}\over 2})^2}{dz\over iz} = +\fr2i\int_C {z\over (z^2+2az+1)^2}.$$ +which has two singularities, those being +$$z^2 + 2az + 1 = 0 \to z = \pm\sqrt{a^2 - 1} - a.$$ +Only the more positive singularity $z_0$ is within $|z|<1,$ where $a > +1.$ The integrand can be rewritten as +$${\phi(z)\over (z-z_0)^2}$$ +where $\phi(z) = {z\over (z-z_1)^2},$ $z_1$ being the more negative +singularity. +The singularity has residue +$$B_0 = \phi'(z_0) = {-z_1-z_0\over (z_0-z_1)^3} += {2a\over 8\sqrt{a^2-1}^3},$$ +giving the integral value +$$\int_0^\pi {d\theta\over (a+\cos\theta)^2} = 2\pi i\fr2i\cdot{2a\over +8\sqrt{a^2-1}^3} = {a\pi\over\sqrt{a^2-1}^3}.$$ + +\bye diff --git a/kang/hw13.tex b/kang/hw13.tex new file mode 100644 index 0000000..251a1d2 --- /dev/null +++ b/kang/hw13.tex @@ -0,0 +1,126 @@ +\def\arg{\mathop{arg}\nolimits} +\let\rule\hrule +\def\hrule{\goodbreak\medskip\rule\medskip\goodbreak} + +%page 293 +\noindent{\bf 2.} + +The graph of the contour image encircles the origin three times, giving +$\Delta_C \arg f(z) = 2\pi\cdot 3 = 6\pi$ and, because it is analytic +inside and on $C,$ $P = 0 \to 3 = Z - P = Z,$ or there are three zeroes, +counting multiplicities, on $f(z)$ within $C.$ + +\noindent{\bf 7.} + +\noindent{\it (a)} + +On $|z|=2,$ +$$36 = |9z^2| \geq 35 = 16 + 16 + 2 + 1 \geq |z^4 - 2z^3 + z - 1|,$$ +meaning the circle contains the same number of zeroes on the original +and $9z^2,$ or 2, by Rouch\'e's theorem. + +\noindent{\it (b)} + +Similarly, +$$32 = |z^5| \geq 29 = 24 + 4 + 1 \geq |3z^3+z^2+1|,$$ +giving 5 zeroes by the same method. + +\hrule +%page 301 +\noindent{\bf 2.} + +$$w = iz + i = i(x+yi) + i = -y + (x+1)i = u+vi \to v = x+1,$$ +so if $x>0,$ $v>1.$ + +\noindent{\bf 5.} + +$$w = (1-i)z = (1-i)(x+yi) = x - ix + yi + y = (x+y) + (y-x)i = u+vi,$$ +so by manipulating $u=x+y$ and $v=y-x,$ +$$y = (u+v)/2 > 1 \to u+v > 2 \leftrightarrow v > 2-u.$$ + +\hrule +%page 305 +\noindent{\bf 3.} + +$$y = {-v\over u^2+v^2} > c_2 \to c_2(u^2+v^2) + v < 0,$$ +which if $c_2>0$ becomes +$$c_2u^2 + c_2(v+1/2c_2)^2 < 1/c_2^2,$$ +which is the interior of a circle. + +If $c_2 = 0,$ this is $v<0,$ or a half-plane, and if $c_2<0,$ the +relation is inverted, and it is transformed to the exterior of a circle. + +\noindent{\bf 7.} + +This is first a leftward translation of $1$ and then the $w = 1/z$ +transform, or an inversion across $|z-1| = 1,$ then a reflection across +the x-axis. + +\noindent{\bf 13.} + +With $z = r_0e^{i\theta},$ + +$$w = z + {1\over z} = r_0e^{i\theta} + {1\over r_0}e^{-i\theta} = +r_0(\cos\theta + i\sin\theta) + {1\over r_0}(\cos\theta - i\sin\theta) = +u + vi$$ + +$$u = (r_0+1/r_0)\cos\theta,\quad v = (r_0-1/r_0)\sin\theta.$$ + +\hrule +%page 311 + +\noindent{\bf 3.} + +Since $0\mapsto\infty,$ $c\neq0$ and $d=0,$ giving +$$w = {az+b\over cz}.$$ +$\infty\mapsto0,$ so $a=0,$ and $i\mapsto i$ gives +$$i = {b\over ci} \to -c = b,$$ +thus +$$w = {-c\over cz} = -{1\over z}$$ + +\noindent{\bf 9.} + +If $f(0) = 0,$ and with $AB \neq 0,$ +$${w(w_2-w_3)\over (w-w_3)w_2} = {z(z_2-z_3)\over(z-z_3)z_2} \to +Aw(z-z_3) = Bzw - Bzw_3 $$$$ w(A(z-z_3)-Bz) = - Bzw_3 \to w = +{z\over (B-A)z/(Bw_3) - z_3/w_3},$$ +QED. + +\hrule +%page 325 + +\noindent{\bf 4.} + +$$w = e^z = e^{x+iy} = e^xe^{iy} = \rho e^{i\phi} \to \rho = e^x,\quad +\phi = y.$$ + +From the original constraints, +$$0\leq\phi\leq\pi, \quad \rho\geq1.$$ + +\def\li{\leavevmode\llap{\hbox to \parindent{\hfil$\bullet$\hfil}}} +\noindent This gives boundaries: + +\li the inner semicircle of radius untiy, corresponding to the $x=0$ +boundary, + +\li the positive x-axis, corresponding to the $y=0$ boundary, and + +\li the negative x-axis, corresponding to the $y=\pi$ boundary. + +\noindent{\bf 9.} + +Using the following parametric representations, +$$u = \sin x\cosh y,\quad v = \cos x\sinh y,$$ +the bottom of the rectangular region $y = a$ and $-\pi\leq x\leq\pi$ +becomes $u = \cosh a\sin x,$ $v = \sinh a\cos x,$ which is the +parametrization of a complete ellipse with minor and major axes $\sinh +a$ and $\cosh a,$ respectively. +Similary, the upper bound parametrizes an ellipse with minor and major +axes $\sinh b$ and $\cosh b.$ +This implies that the region between them continuously fills the space +between them. + +The cut is between $x=\pi$ and $x=-\pi$ because $\sin\pi = \sin(-\pi)$ +and $\cos\pi=\cos(-\pi),$ meaning these boundaries overlap in the image. + +\bye diff --git a/kang/hw14.tex b/kang/hw14.tex new file mode 100644 index 0000000..4c21f9b --- /dev/null +++ b/kang/hw14.tex @@ -0,0 +1,103 @@ +\def\arg{\mathop{\rm arg}\nolimits} +\let\rule\hrule +\def\hrule{\goodbreak\medskip\rule\medskip\goodbreak} + +%page 317 +\noindent{\bf 1.} + +$$w = {i-x\over i+x} = {(i-x)^2\over -1 - x^2} = -{-1 - 2ix + x^2 \over +1+x^2} = {1-x^2\over 1+x^2} + i{2x\over 1+x^2}.$$ +$y=0,$ the boundary of the preimage in Figure 13 transforms into + +$$|w| = {\sqrt{(1-x^2)^2+4x^2}\over 1+x^2} = +{\sqrt{1-2x^2+x^4+4x^2}\over 1+x^2} = 1.$$ + +\noindent{\bf 7.} + +Take $$\rho = \ln|Z|, \quad 0< \Theta = \arg(Z) \leq 2\pi.$$ +$$w = \rho + i\Theta.$$ + +\hrule +%page 330 +\noindent{\bf 1.} + +With constant $y_1,$ +$$u = x^2 - y_1^2, \quad v = 2xy_1.$$ +$$u = (v/2y_1)^2 - y_1^2 \to 4y_1^2(u+y_1^2) = v^2,$$ +assuming $y_1>0.$ + +\noindent{\bf 4.} + +$y=0$ gives $u = x_1^2, v = 0,$ and $v(y) = -v(-y), u(y) = u(-y),$ +telling us that $x_1 = 1$ transforms into a complete parabolic region +with form $v^2 = -4(u-1).$ + +$x=\pm y$ similarly gives +$$u = x^2 - x^2, \quad v = \pm 2x^2 \to u = 0, \quad v\in {\bf R,}$$ +which at the given boundary points has $A = 0 \mapsto A' = 0,$ $C = +1\mapsto C' = 1,$ $D = 1+i \mapsto D' = 2,$ and $B' = 1-i\mapsto -2,$ +under the $w = z^2$ transformation. +This completes the boundary of the region, which is interior to the +boundary. + +\hrule +%page 352 +\noindent{\bf 1.} + +$${dw\over dz} = 2z = 2(2+i)$$ +at $z_0 = 2+i,$ giving an angle of rotation $\arg 2+i = \tan^{-1}(1/2)$ +and scale factor $|2(2+i)| = 2\sqrt{5}.$ +This can be demonstrated with $y=1,$ passing through $z_0$ at angle +$\theta = 0,$ transformed into +$$(x+iy)^2 = (x+i)^2 = (t+2+i)^2 = t^2 + 2(1+i)t + 2,$$ +which, since $x(0) = z_0,$ gives an angle equal to the argument of +$2(1+i),$ which is $\pi/4.$ + +\noindent{\bf 4.} + +The transformation $w=z^n$ gives +$${dw\over dz} = nz^{n-1},$$ +meaning that $\rho_0\exp(i\theta_0)$ gives angle of rotation +$\arg(n\rho_0^{n-1}\exp(i(n-1)\theta_0)) = (n-1)\theta_0$ and scale +factor $|n\rho_0^{n-1}\exp(i(n-1)\theta_0)| = n\rho_0^{n-1}.$ + +\hrule +%page 357 +\noindent{\bf 1.} + +\noindent{\it (a)} + +$$u(x, y) = 2x - x^3 + 3xy^2.$$ + +This is harmonic because $$u_{xx} + u_{yy} = - 6x + 6x = 0$$ on all +$x\in{\bf R}.$ + +$$v_y = u_x = 2 + 3y^2 \to v(x,y) = 2y + y^3 + g(x).$$ + +$$g'(x) = v_x = -u_y = -6xy = \to v(x,y) = 2y + y^3 - 3x^2y+C.$$ + +\noindent{\it (b)} + +$$u(x,y) = \sinh x \sin y$$ + +This is harmonic because $$u_{xx} + u_{yy} = +\sinh x\sin y - \sinh x\sin y = 0.$$ + +$$v_y = u_x = \cosh x\sin y \to v(x,y) = -\cosh x\cos y + g(x).$$ +$$g'(x) = v_x = -u_y = -\sinh x\cos y \to v(x,y) = -\cosh x\cos y - +\cosh x\cos y + C = C - 2\cosh x\cos y.$$ + +\noindent{\it (c)} + +$$u(x,y) = {y\over x^2+y^2}$$ + +This is harmonic because $$u_{xx} + u_{yy} = 0.$$ + +$$v_y = u_x = {-2yx \over (x^2+y^2)^2} \to v = {x\over x^2+y^2} + g(x).$$ + +$$g'(x) = v_x = -u_y = -{x^2+y^2 - 2y^2\over (x^2+y^2)^2} \to g(x) = +{x\over x^2+y^2} + C.$$ + +% also read sec 127-128, 129 (question unnecessary) + +\bye diff --git a/kang/hw2.tex b/kang/hw2.tex new file mode 100644 index 0000000..5841038 --- /dev/null +++ b/kang/hw2.tex @@ -0,0 +1,166 @@ +\def\Re{\mathop{\rm Re}\nolimits} +\def\Im{\mathop{\rm Im}\nolimits} +\def\Arg{\mathop{\rm Arg}\nolimits} +\def\sec#1{\vskip0pt plus .3fil\goodbreak\vskip 0pt plus -.3fil\medskip\noindent{\bf#1}} +\tabskip=0pt plus 1fil + +% pg 13 +\sec{2.} + +Generally, $x<|x|,$ and $|z| = \sqrt{(\Re z)^2+(\Im z)^2} +\to |z|^2 = |\Re z|^2 + |\Im z|^2 \to |\Re z|^2\leq |z|^2 \to |\Re z| +\leq |z|.$ + +\sec{5.} + +\halign to \hsize{&#\cr +\vrule height 2in width 0pt\cr +$|z-1+i=1|$&$|z+i|\leq3$&$|z-4i|\geq4$\cr} + +%circle centered at (1-i) of rad 1 +%closed circle centered at -i +%everything but the circle of rad 4 around 4i, closed + +\sec{6.} + +$|z_1-z_2|$ is the distance between two points, so $|z-1| = |z+i|$ +represents every point $z$ that is equally distant from $(1,0)$ and +$(0,-1).$ These points can be imagined as the intersection points of two +expanding circles from these points. The expanding circles first meet at +the midpoint, and then the intersection points move perpendicular to the +line between them. The line between the two points has a slope of 1 and +goes through $(.5,-.5),$ so the perpendicular line will go through the +origin with slope $-1$. + +% pg 16 +\sec{2.} + +\halign to \hsize{&#\cr +\vrule height 2in width 0pt\cr +$\Re(\overline z - i) = 2$&$|2\overline z + i| = 4$\cr} + +%x = 2 +%|2\overline z + i| = |2z - i| = 2|z - i/2| = 4. Circ around i/2, rad 2 + +\sec{7.} + +$|\overline z| = |z|,$ and because $|z|\leq 1,$ $|z^3|=|z|^3\leq 1.$ + +$$|\Re(2+\overline z+z^3)| \leq |2+\overline z+z^3| \leq |2| + +|\overline z| + |z^3| \leq 4,$$ +by addition of the maximum values of each value. + +\sec{14.} + +$x^2-y^2 = 1 \to (\Re z)^2-(\Im z)^2 = 1 = +({z + \overline z\over 2})^2 - ({z - \overline z\over 2i})^2 = +(1/4)(({z+\overline z})^2 + ({z-\overline z})^2) = +(1/4)(z^2 + 2z\overline z + \overline z^2 + z^2 - 2z\overline z + +\overline z^2) = (1/4)(2z^2 + 2\overline z^2) +\to z^2 + \overline z^2 = 2.$ + +% pg 23 +\sec{1.} + +\noindent{\it (a)} + +$$z = {-2\over 1+\sqrt 3 i}.$$ + +$\arg z = \arg(-2) - \arg(1+\sqrt 3 i) = \pi - (\pi/3)+2\pi n = 2\pi/3 + +2\pi n.$ +Therefore, $\Arg z = 2\pi/3$ + +\noindent{\it (b)} + +$$z = \left(\sqrt3 - i\right)^6.$$ + +$\arg z = 6\arg\left(\sqrt3 - i\right) = 6(-5\pi/6) = -5\pi +\to \Arg z = \pi.$ + +\sec{6.} + +If $\Re z > 0,$ $-\pi/2 < \Arg z < \pi/2$ because the absolute angle +from the x-axis cannot be greater than $\pi/2.$ + +Because $\arg(z_1z_2) = \arg z_1 + \arg z_2,$ + +$$-\pi < \arg(z_1z_2) = \arg z_1 + \arg z_2 < \pi.$$ + +% pg 30 +\sec{3.} + +$$|-8-8\sqrt 3 i| = 16.$$ +$$\arg(-8-8\sqrt 3 i) = -2\pi/3+2\pi n.$$ +$$(-8-8\sqrt 3 i)^{1/4} = 2(\cos(-\pi/6+n\pi/2)+i\sin(-\pi/6+n\pi/2)).$$ +Fully expanded, this is $\pm(\sqrt3-i)$ and $\pm(1+\sqrt3i),$ which form +the vertices of a particular square. The principal root has argument +$-\pi/6,$ so it is $\sqrt3-i$ + +\sec{6.} + +$$z^4+4=0 \to z^4 = -4 \to z^4 = 4e^{i\pi+2n\pi} \to z = \sqrt2 +e^{i\pi/4 + n\pi/2},$$ + +so the other zeroes are $\pm(-1+i)$ and $\pm(1+i).$ + +$$(z-(1+i))(z-(1-i))(z+(1+i))(z+(1-i)) = (z^2-2z+2)(z^2+2z+2).$$ + +%pg 34 +\sec{5.} + +$S_1,$ where $|z|<1$ and $S_2,$ where $|z-2|<1$ are both open sets, so +they have no intersection. Because they don't intersect, there cannot be +a polygonal line that is continuous and in both sets. + +\sec{7.} + +\noindent{\it (a)} + +$z_n = i^n$ has no accumulation points because the set +$\{z_0,z_1,\ldots\} = \{1,i,-1,-i\},$ so any point $z$ other than these +four would not contain them in its neighborhood $\eta = |z-z_0|,$ where +$z_0$ is in the set (and these four points are not in their own deleted +neighborhoods). + +\noindent{\it (b)} + +$0$ is the accumulation point of this set. $|z_n-0| = 1/n,$ so for all +$\eta-{\rm neighborhoods}$ of $0$ include some elements of this set. + +\noindent{\it (c)} + +For this set, all points in $0\leq\arg z \leq \pi/2,$ and $z=0$ are +accumulation points because that is the closure of this open, connected +set. + +\noindent{\it (d)} + +For even $n,$ (i.e. $n$ where $(-1)^n = 1$) $|z_n - (1+i)| = 1/n,$ so +$(1+i)$ is an accumulation point. Similar is true for odd $n$ and +$-(1+i).$ No other points are accumulation points. + +%pg 43 +\sec{2.} + +\noindent{\it (a)} + +$$f(z) = z^3 + z + 1 = (x+iy)^3 + x + iy + 1 = x^3 + 3x^2yi - 3xy^2 - +y^3i + x + iy + 1$$$$ = (x^3 - 3xy + x - 1) + i(3x^2y - y^3 + i).$$ + +\noindent{\it (b)} + +$$f(z) = {\overline z^2\over z} = {\overline z^3\over z\overline z} = +{\overline z^3\over |z|^2} = {x^3+3x^2yi-3xy^2+y^3i\over x^2+y^2} = +{x^3-3xy^2\over x^2+y^2} + i{3x^2y+y^3\over x^2+y^2}.$$ + +\sec{8.} + +Images of $r\leq1$ and $0\leq\theta\leq\pi/4.$ + +\halign to \hsize{&#\cr +\vrule height 2in width 0pt\cr +$w=z^2$&$w=z^3$&$w=z^4$\cr} +% r \leq 1 for all +% 0\leq\theta\leq n\pi/4 where w=z^n + +\bye diff --git a/kang/hw3.tex b/kang/hw3.tex new file mode 100644 index 0000000..32cb710 --- /dev/null +++ b/kang/hw3.tex @@ -0,0 +1,84 @@ +\def\Re{\mathop{\rm Re}\nolimits} +\def\Im{\mathop{\rm Im}\nolimits} + +% page 54 +\noindent{\bf 7.} + +By the triangle theorem, +$$|f(z)-w_0|+|w_0| \geq |f(z)| \to ||f(z)|-|w_0|| \leq +|f(z)-w_0|<\delta,$$ +where $|z-z_0|<\epsilon$ by definition of the first limit. +% not sure how to prove the abs transformation + +This shows that, as $z\to z_0,$ $|f(z)| \to |w_0|,$ because for all +$\epsilon,$ there exists $\delta$ such that $||f(z)|-|w_0||\leq\delta.$ + +\noindent{\bf 11.} + +\noindent{\it (a)} + +$\lim_{z\to\infty} T(z) = \infty$ is true iff $$\lim_{z\to 0} +T(z^{-1})^{-1} = 0 = \lim_{z\to 0} {d\over az^{-1}+b} = \lim_{z\to 0} +{d\over z^{-1}(a+bz)} = \lim_{z\to 0} {zd\over a+bz} = +(\lim_{z\to 0} zd)/(\lim_{z\to 0} a+bz).$$ + +$ad+bc \neq 0 \to ad \neq 0 \to a\neq0, d\neq0,$ so this becomes $0/a = +0,$ and the theorem is proved. + +\noindent{\it (b)} + +When $c\neq 0$, $\lim_{z\to\infty} T(z) = a/c$ if +$$\lim_{z\to 0} T(z^{-1}) = a/c = {az^{-1}+b\over cz^{-1}+d} += {z^{-1}(a+bz)\over z^{-1}(c+dz)} = {a+bz\over c+dz} = {\lim_{z\to 0} +a+bz\over \lim_{z\to 0} c+dz} = a/c.$$ + +$\lim_{z\to -d/c} T(z) = \infty$ if $$\lim_{z\to -d/c} {cz+d\over az+b} += 0 = {\lim_{z\to -d/c} cz+d\over\lim_{z\to -d/c} az+b} = {0\over k} = 0,$$ + +and $k\neq 0$ because $ad-bc\neq0 \to -ad/c + b \neq 0.$ + +% page 61 +\noindent{\bf 2.} + +\noindent{\it (a)} + +$f'(z) = (3z^2)' + (-2z)' + 4' = 6z - 2,$ by the addition rule of +derivatives, $(af(x))' = af'(x),$ and the power rule. + +\noindent{\it (b)} + +By the chain rule, $g(w) = w^5,$ and $w = f(z) = 2z^2 + i,$ $$F'(z) = +g'(w)f'(z) = 5w^4 \cdot 4z = 20(2z^2+i)^4z,$$ +with the power rule. + +\noindent{\it (c)} + +${z-1\over 2z+1} = (z-1)(2z+1)^{-1},$ so this can be solved with the +product and chain rules: +$${d\over dz} {z-1\over 2z+1} = (2z+1)^{-1} - {2(z-1)\over (2z+1)^2}.$$ + +\noindent{\it (d)} + +With the product rule, and $f(z) = (1+z^2)^4$ and $g(z) = z^{-2},$ +$$F'(z) = f'(z)g(z) + f(z)g'(z) += {8z(1+z^2)^3\over z^2} - 2{(1+z^2)^4\over z^3}$$ +because $f'(z) = 8z(1+z^2),$ by the chain rule with $h(z) = 1+z^2 \to +h'(z) = 2z$ and +$k(z) = w^4 \to k'(z) = 4w^3.$ + +\noindent{\bf 8.} + +\noindent{\it (a)} + +When $f(z) = \Re(z),$ $\delta w = \Re(z+\delta z) - \Re(z) = \Re(\delta +z).$ $f'(z) = \delta w/\delta z = \Re(\delta z)/\delta z$ is, if $z = +\epsilon,$ (and $\epsilon$ is real) 1, but if $z = i\epsilon,$ $f'(z) = +0/(i\epsilon) = 0.$ Therefore, the derivative DNE. + +\noindent{\it (b)} + +Similarly, $f(z) = \Im(z)$ gives $f'(z) = \Im(\delta z)/\delta z,$ +which, for $z = i\epsilon,$ is 1, but for $z = \epsilon,$ $f'(z) = 0.$ +Therefore, the derivative also DNE. + +\bye diff --git a/kang/hw4.tex b/kang/hw4.tex new file mode 100644 index 0000000..d4fb394 --- /dev/null +++ b/kang/hw4.tex @@ -0,0 +1,163 @@ +\def\Re{\mathop{\rm Re}\nolimits} +\def\Im{\mathop{\rm Im}\nolimits} +\let\rule\hrule +\def\hrule{\medskip\rule\medskip} + +%page 70 +\noindent{\bf 1.} + +\noindent{\it (a)} + +If $f(z) = \overline z = x - yi,$ $U_x = 1$ and $V_y = -1.$ $U_x\neq V_y,$ +so because the Cauchy-Riemann equations are dissatisfied, the derivative +does not exist. + +\noindent{\it (b)} + +If $f(z) = z-\overline z = x + yi - (x - yi) = 2yi,$ $U_x = 0,$ and $V_y += 2i.$ Again, $U_x\neq V_y.$ + +\noindent{\it (c)} + +If $f(z) = 2x+ixy^2,$ + +$U_x = 2.$ $V_y = 2ix.$ +$U_x = V_y \to 2 = 2ix \to x = 1/i = -i.$ $x\in R,$ so this is false, +and the function is not analytic. + +\noindent{\it (d)} + +If $f(z) = e^xe^{-iy},$ + +$$U_x = e^xe^{-iy}.$$ +$$V_y = -ie^xe^{-iy} \neq U_x.$$ + +\noindent{\bf 3.} +% only info from secs 21 and 23 + +\noindent{\it (a)} + +$f(z) = 1/z = \overline z/|z|^2 = (a-bi)/(a^2+b^2).$ + +The partial derivatives are $U_x = (y^2-x^2)/(x^2+y^2)^2,$ +$V_y = (y^2-x^2)/(x^2+y^2)^2,$ $U_y = (-2xy)/(x^2+y^2)^2,$ and $V_x = +(2xy)/(x^2+y^2)^2.$ These satisfy the Cauchy-Riemann equations except +where they are undefined, $x^2+y^2 = 0 \to z = 0.$ Using the power rule +on $f(z) = z^{-1},$ $f'(z) = -z^{-2}.$ + +\noindent{\it (b)} + +$f(z) = x^2+iy^2.$ + +The partial derivatives are $U_x = 2x,$ $U_y = 0,$ $V_y = 2y,$ and $V_x += 0.$ $0 = 0$ at all points, but $2y = 2x$ only for $x = y$ or +$z = x+ix.$ + +Its derivative is, from these partial derivatives, $2x.$ + +\noindent{\it (c)} + +$f(z) = z\Im z = (x+iy)y = xy + iy^2.$ + +$U_x = y = V_y = 2y \to y = 0.$ $U_y = x = -V_x = 0 \to x = 0.$ +Therefore, $z = 0 + i0 = 0.$ From these partial derivatives, its +derivative on this domain is $0.$ + +\hrule +%page 76 +\noindent{\bf 4.} + +\noindent{\it (a)} + +$$f(z) = {2z+1\over z(z^2+1)}$$ + +$f(z)$ is not analytic on $z=0$ or $z^2+1=0 \to z = \pm i.$ It is, +however, analytic on the remainder of the plane because, using the chain +rule and the product rule, its derivative can be constructed from its +component polynomials (which are entire functions). + +\noindent{\it (b)} + +$$f(z) = {z^3+i\over z^2-3z+2}$$ + +This is not analytic on $z^2-3z+2 = 0 = (z-1)(z-2) \to z = 1,2.$ It is +analytic on the remainder of the plane for the same reason as (a). + +\noindent{\it (c)} + +$$f(z) = {z^2+1\over (z+2)(z^2+2z+2)}.$$ + +This is not analytic on $z+2 = 0 \to z = -2$ or $z^2+2z+2 = 0 = +(z+(1-i))(z+(1+i)) \to z = 1\pm i.$ It is analytic for the same reason +as (a). + +\hrule +%page 79 +\noindent{\bf 4.} + +See addendum. + +\hrule +%page 89 +\noindent{\bf 2.} + +$$f(z) = 2z^2 - 3 - ze^z + e^{-z}.$$ + +If the component functions $f$ and $g$ are analytic on the plane (have a +defined derivative), $f+g$ is also analytic on the plane. +A similar rule exists for the product of entire functions. +$2z^2$ follows the power rule, and has a derivative over the entire +plane, and $-3$ follows the constant rule, having a derivative of 0. +$-z$ is entire, also from the power rule, and $e^z$ has been shown to +have a derivative in chapter 3. Using the product rule, $-ze^z$ is +entire. +$e^{-z}$ is a composition of $e^z$ and $-z,$ which each are analytic +over the plane, so their composition is also analytic over the plane. + +This means $f(z)$ is entire. + +\noindent{\bf 8.} + +\noindent{\it (a)} + +$e^z = -2.$ $e^x = |z| = |-2| = 2 \to x = \ln 2,$ and +$\arg z = \pi + 2n\pi,$ so $z = \ln2 + i(\pi+2n\pi).$ + +\noindent{\it (b)} + +$e^z = 1 + i.$ $e^x = |z| = |1+i| = \sqrt 2 \to x = (1/2)\ln2,$ and +$\arg z = \pi/4 + 2n\pi.$ Therefore, $z = (1/2)\ln2 + i(\pi/4+2n\pi).$ + +\noindent{\it (c)} + +If $\exp(2z-1) = 1,$ $\exp(2z)e^{-1} = 1 \to e^{2z} = e.$ This gives +$e^{2x} = |e| = e \to 2x = 1 \to x = 1/2,$ and $\arg(2z) = 2n\pi \to +\arg z = n\pi,$ so $z = 1/2 + in\pi.$ + +\hrule +%page 95 +\noindent{\bf 2.} + +\noindent{\it (a)} + +$$\log e = 1 + 2n\pi i$$ + +$\ln e = 1,$ and $\arg e = 2n\pi.$ This proves the above identity (with +$n = 0,\pm1,\pm2,\ldots$) + +\noindent{\it (b)} + +$$\log i = \left(2n + {1\over2}\right)\pi i$$ + +$\ln|i| = \ln1 = 0,$ and $\arg i = \pi/2 + 2n\pi.$ This makes $\log i = +(2n+1/2)\pi i.$ + +\noindent{\it (c)} + +$$\log(-1+\sqrt3i) = \ln2 + 2\left(n + {1\over3}\right)\pi i$$ + +$\ln|-1+\sqrt3i| = \ln2,$ and $\arg(-1+\sqrt3i) = 2\pi/3 + 2n\pi,$ which +corresponds to the given identity ($\log(-1+\sqrt3i) = (2n\pi+2\pi/3)i + +\ln2.$) + +\bye diff --git a/kang/hw5.tex b/kang/hw5.tex new file mode 100644 index 0000000..977cbed --- /dev/null +++ b/kang/hw5.tex @@ -0,0 +1,185 @@ +\def\Re{\mathop{\rm Re}\nolimits} +\def\Im{\mathop{\rm Im}\nolimits} +\def\Log{\mathop{\rm Log}\nolimits} +\let\rule\hrule +\def\hrule{\medskip\rule\medskip} + +%page 95 +\noindent{\bf 8.} + +$$\log z = i\pi/2 \to z = e^{i\pi/2} = i,$$ by Euler's formula. + +\hrule +%page 99 +\noindent{\bf 2.} + +\noindent{\it (a)} + +Where $z_n = r_ne^{i\theta_n},$ for all values of $\theta_n,$ +$$\log\left({z_1\over z_2}\right) = \ln|z_1/z_2| + i\arg(z_1/z_2)$$$$ = +(\ln(r_1) - \ln(r_2)) + i(\theta_1-\theta_2) = (\ln(r_1) + i\theta_1) - +(\ln(r_2) + i\theta_2) = \log z_1 - \log z_2,$$ +because $\ln(a-b) = \ln a - \ln b$ and $\arg(z_1/z_2) = \arg(z_1) - +\arg(z_2).$ + +\noindent{\it (b)} + +$1/z = \overline z/|z|^2.$ $$\log(1/z) = \ln|1/z| + i\arg(1/z) = +- \ln|z| - i\arg z = - (\ln|z| + i\arg z) = -\log(z),$$ so +$$\log(z*(1/z)) = \log(z) + \log(1/z) = \log(z) - \log(z) = 0.$$ + +\hrule +%page 103 +\noindent{\bf 2.} + +\noindent{\it (a)} + +The principal value of $(-i)^i$ is $e^{i\Log(i)} = e^{i\pi/2}.$ + +\noindent{\it (b)} + +The base of this power function is $e^(1-2\pi/3) = b \to \Log(b) = 1-2\pi i/3.$ +This gives a principal value of $e^{3\pi i(1-2\pi/3)} = e^{3\pi i - 2\pi^2} = +-e^{2\pi^2}.$ + +\noindent{\it (c)} + +The principal value of $(1-i)^{4i}$ is $e^{\Log(1-i)4i} = +e^{(4i)(\ln(2)/2 - \pi/4)} = e^{(2\ln(2)i)-\pi} = e^{-\pi}(\cos(2\ln(2)) ++ i\sin(2\ln(2))).$ + +\noindent{\bf 8.} + +\noindent{\it (a)} + +$$z^{c_1}z^{c_2} = e^{c_1\Log(z)}e^{c_2\Log(z)} = e^{\Log(z)(c_1+c_2)} = +z^{c_1+c_2}.$$ + +\noindent{\it (b)} + +$${z^{c_1}\over z^{c_2}} = {e^{\Log(z)c_1}\over e^{\Log(z)c_2}} = +e^{c_1\Log z - c_2\Log z} = e^{\Log(z)(c_1-c_2)}.$$ + +\noindent{\it (c)} + +$$(z^c)^n = (e^{c\Log z})^n = e^{nc\Log z} = z^{cn}.$$ + +\hrule +%page 107 +\noindent{\bf 3.} + +$$\sin(z+z_2) = \sin z \cos z_2 + \cos z \sin z_2 \to +\cos(z+z_2) = \cos z \cos z_2 - \sin z \sin z_2 \to +\cos(z_1+z_2) = \cos z_1\cos z_2-\sin z_1\sin z_2.$$ + +\noindent{\bf 7.} +% need to do more here + +$\sin z = \sin x \cosh y + i\cos x \sinh y.$ +$\cos z = \cos x \cosh y - i\sin x \sinh y.$ + +$$|\sin z|^2 = (\sin x\cosh y)^2 + (\cos x\sinh y)^2 += \sin^2 x(1+\sinh^2 y) + \cos^2 x\sinh^2 y = +\sin^2 x + \sinh^2 y.$$ + +$$|\cos z|^2 = \cos^2 x \cosh^2 y + \sin^2 x \sinh^2 y += \cos^2 x \cosh^2 y + (1-\cos^2 x)\sinh^2 y += \sinh^2 y + \cos^2 x.$$ + + +\noindent{\bf 12.} + +$\sin z$ and $\cos z$ are real with $z$ on the real axis. +Therefore, $\overline{\sin z} = \sin\overline z$ and $\overline{\cos z} += \cos\overline z.$ + +\hrule +%page 111 +\noindent{\bf 6.} + +\noindent{\it (a)} +$$|\cosh z|^2 = \sinh^2 x + \cos^2 y \to |\sinh x|^2 \leq |\cosh z|^2 +\to |\sinh x|\leq |\cosh z|.$$ +$$|\cosh z|^2 = \cosh^2 x + cos^2 y \to |\cosh z|^2 \leq \cosh^2 x \to +|\cosh z| \leq \cosh x,$$ +because $\cosh x > 0.$ + +\noindent{\it (b)} +%9b of sec 38 would probably be good + +$$|\sinh y| \leq |\cos z| \leq \cosh y.$$ +We change $z$ to $z' = zi,$ so $y$ becomes $x.$ +$$|\sinh x| \leq |\cosh z| \leq \cosh x.$$ + +\noindent{\bf 16.} +$$\sinh z = \sinh x \cos y + i\cosh x \sin y.$$ +$$\cosh z = \cosh x \cos y + i\sinh x \sin y.$$ + +\noindent{\it (a)} +$$\sinh z = i = \sinh x\cos y + i\cosh x\sin y \to 1 = \cosh x\sin y = +\sin y,$$ +because all zeroes of $\cosh x$ are on imaginary axis, so +$x = 0 \to \cosh x = 1.$ + +$\sin y = 1$ on $y = 2n\pi + \pi/2 \to z = (2n\pi + \pi/2)i.$ + +\noindent{\it (b)} +$$\cosh z = \cosh(yi) = 1/2 = \cos y \to y = (2n\pi \pm \pi/3)i.$$ + +\hrule +%page 113 +\noindent{\bf 1.} +%learn the derivation of inverse sin + +\noindent{\it (c)} + +$$\cosh^{-1}(-1) = \log\left[-1+0^{1/2}\right] = \log(1) += 2n\pi i+\pi.$$ + +\hrule +%page 119 +\noindent{\bf 2.} + +\noindent{\it (a)} + +$\int_0^1 (1+it)^2 dt = \int_0^1 1 + 2it - t^2 dt = +[t + it^2 - t^3/3]_0^1 = 1 + i - 1/3 = 2/3 + i.$ + +\noindent{\it (b)} + +$\int_1^2 \left({1\over t} -i\right)^2 dt = \int_1^2 {1\over t^2} - +{2i\over t} - 1 dt = [-{1\over t} - 2i\ln t - t]_1^2 = +1-{1\over 2} - 2i\ln2 + 2 - 1 = 3/2 - 2i\ln2.$ + +\noindent{\it (c)} + +$\int_0^{\pi/6} e^{i2t} dt = \int_0^{\pi/6} \cos(2t) + i\sin(2t) dt = +(1/2)[\sin(2t) - i\cos(2t)]_0^{\pi/6} (1/2)[\sqrt3/2 - i/2].$ + +\noindent{\it (d)} + +$\int_0^\infty e^{-zt} dt = \lim_n\to\infty [-e^{-zt}/z]_0^n = 1/z - +\lim_t\to\infty e^{-zt}/z = 1/z.$ + +\hrule +%page 123 +\noindent{\bf 1.} +%do no 2 to confirm knowledge of jordan curve + +\noindent{\it (a)} + +This is true for a real-valued function, so +$$\int_{-b}^{-a} u(-t) dt + i\int_{-b}^{-a} v(-t) = \int_a^b u(t) dt + +i \int_a^b v(t) dt,$$ +because $u$ and $v$ are real-valued, so the corresponding imaginary and +real components are equal. + +\noindent{\it (b)} + +This is true of a real function on $(a,b),$ so $$\int_a^b u(t) dt = +\int_\alpha^\beta u(\phi(\tau))\phi'(\tau) d\tau,$$ +and similarly for $v(t),$ so +$$\int_a^b u(t)+iv(t) dt = +\int_\alpha^\beta (u(\phi(\tau)) + iv(\phi(\tau))\phi'(\tau) d\tau.$$ + +\bye diff --git a/kang/hw6.tex b/kang/hw6.tex new file mode 100644 index 0000000..a2b684e --- /dev/null +++ b/kang/hw6.tex @@ -0,0 +1,64 @@ +\def\Re{\mathop{\rm Re}\nolimits} +\def\Im{\mathop{\rm Im}\nolimits} +\def\Log{\mathop{\rm Log}\nolimits} +\let\rule\hrule +\def\hrule{\medskip\rule\medskip} + +% page 132 +\noindent{\bf 1.} + +\noindent{\it (a)} + +$$\int_0^\pi {2e^{i\theta}+2\over 2e^{i\theta}} 2ie^{i\theta} d\theta += \int_0^\pi i(2e^{i\theta} + 2) d\theta += \int_0^\pi 2ie^{i\theta} d\theta + \int_0^\pi 2i d\theta += 2(-1 - 1) + 2\pi i.$$ + +\noindent{\it (b)} + +$$\int_\pi^{2\pi} {2e^{i\theta} + 2\over 2e^{i\theta}} 2ie^{i\theta} d\theta += \int_\pi^{2\pi} i(2e^{i\theta} + 2) d\theta += \int_\pi^{2\pi} 2ie^{i\theta} d\theta + \int_\pi^{2\pi} 2 d\theta += 4 + 2\pi i. +$$ + +\noindent{\it (c)} + +This is equivalent to the sum of integrals over $(0, \pi)$ and $(\pi, +2\pi).$ + +\noindent{\bf 4.} + +Parameterizing the curve as $x + ix^3,$ with $x\in (-1, 1),$ +this integral can be taken as the two integrals (and the discontinuity +ignored because the function is defined at either side of it), +$$\int_{-1}^0 (1+3x^2) dx + \int_0^1 4x^3 (1+3x^2) dx += (1 + 1) + (1 + 2) = 5.$$ + +\hrule +%page 138 +\noindent{\bf 3.} + +The length of the triangle is $3+4+5 = 12,$ and the maximum value of +$$e^z - \overline{z}$$ is $$|e^z - \overline{z}| \leq e^x + \sqrt{x^2 + y^2} +\leq \max{e^z} + \max{\sqrt{x^2 + y^2}} \leq 1 + 4,$$ +so by the theorem, the integral will be less that $ML = 12*5 = 60.$ + +\noindent{\bf 4.} + +The length of the top half of the circle will be $\pi R,$ and the +maximum value of the integrand will be less than the quotient of the +maximum value of the dividend and the minimum value of the divisor. +$|2z^2 - 1|$ has a maximum value of $2R^2 + 1$ at $z = iR,$ and +$$z^4 + 5z^2 + 4 = (z^2 + 1)(z^2 + 4)$$ has a minimum value of $(R^2 - +1)(R^2 - 4)$ (coincidentally at $z = iR,$ although this isn't necessary) + +The upper bound for this integral is, therefore, $ML,$ which corresponds +to the given upper bound. + +Dividing the numerator and the denominator by $R^4$ gives +$$\pi({1/R} + O(1/R^2)) \over 1 + O(1/R),$$ and because $1/R$ and +$1/R^2$ both approach $0$ as $R$ approaches $\infty,$ we get +$$\pi(1/R),$$ which also approaches $0.$ + +\bye diff --git a/kang/hw7.tex b/kang/hw7.tex new file mode 100644 index 0000000..6ca5f51 --- /dev/null +++ b/kang/hw7.tex @@ -0,0 +1,92 @@ +\def\Re{\mathop{\rm Re}\nolimits} +\def\Im{\mathop{\rm Im}\nolimits} +\def\Log{\mathop{\rm Log}\nolimits} +\let\rule\hrule +\def\hrule{\medskip\rule\medskip} + +% page 147 +\noindent{\bf 2.} + +\noindent{\it (a)} + +The antiderivative of $z^2$ is $z^3/3$ (because the derivative of that +function is $z^2$) + +$$\int_0^{1+i} z^2 dz = \left[ {z^3\over3} \right]_0^{1+i} = (2/3)(1-i).$$ + +\noindent{\it (b)} + +$2\sin(z/2)$ differentiates to $\cos(z/2),$ so it is the antiderivative. +The integral, then, evaluates to: + +$$2(\sin(\pi+2i) - \sin 0) = $$ + +\noindent{\it (c)} + +The antiderivative of the integrand is $(z-2)^4/4,$ so the integral +evaluates to +$$\left[ (z-2)^4/4 \right]_1^3 = ( (3-2)^4 - (1-2)^4 )/4 = 0.$$ + +\hrule +%page 159 +\noindent{\bf 2.} + +The corollary tells us that these two integrals will be the same if the +functions are analytic on $C_1,$ $C_2,$ and the region between them. + +\noindent{\it (a)} + +With $$f(z) = {1\over 3z^2 + 1},$$ +$f = (3z^2 + 1)^{-1} = f_1(f_2)$ can be differentiated with the chain +rule if $f_1'$ and $f_2'$ are defined. $z^{-1} = f_1$ is analytic where +$f_2 \neq 0,$ and $3z^2 + 1$ is a polynomial, so it is entire. +Because $3z^2 + 1 = 0 \to |3z^2| = 1 \to |z| = \sqrt{1/3}$ is not within +the described region (it is excluded by the square of radius 1), the +equality holds. + +\noindent{\it (b)} + +Similarly, $$f(z) = {z+2\over \sin(z/2)}$$ +implies the equality holds if $z+2$ and $\sin(z/2)$ are analytic and +$\sin(z/2) \neq 0.$ These are both entire functions, so the first +criterion is trivial. +From an earlier theorem, we know that the only zeroes of $\sin z$ are $z += n\pi$ with $n\in\{0,\pm 1,\pm 2,\ldots\}$ Therefore, $\sin(z/2) = 0$ +requires $z = 2n\pi.$ +However, none of these points are included in the given region because, +where $n\neq0,$ $|z| > 4,$ so they are outside of the bounding circle, +and when $n=0,$ $z=0$ is excluded by the square. + +% i would like to remember this theorem better +% and state the proof more nicely + +\noindent{\it (c)} + +Again, $$f(z) = {z\over 1-e^z}$$ +requires $1 - e^z = 0 \to e^z = 1 \to z = \log 1 = 2n\pi i$ (with $n$ +constrained to the integers). +These points are not contained within the circle $|z|=4,$ except $z=0,$ +which is excluded by the square of radius 1. + +\noindent{\bf 6.} + +The Cauchy-Goursat theorem doesn't apply here because this requires a +branch cut at $\theta = -{\pi\over2},$ so $f(z) = \sqrt{r}e^{i\theta/2}$ +isn't continuously defined on the region. +On the semicircle, $r = 1,$ $\pi \in (0, \pi),$ and $z' = ie^{i\theta},$ +so $$\int_0^\pi (\sqrt{1}e^{i\theta/2})(ie^{i\theta}) d\theta += \int_0^\pi ie^{3i\theta/2} d\theta += \left[ (2/3)e^{3i\theta/2} \right]_0^\pi += (2/3)(e^{3\pi i/2} - 1) = (2/3)(-i-1).$$ + +On the two radii $\theta = 0,\pi,$ $r\in (0,1),$ the integral is +evaluated as +$$\int_0^1 \sqrt{r}e^{i\theta/2}(ie^{i\theta}) dr += e^{3i\theta/2} \int_0^1 \sqrt{r} dr += e^{3i\theta/2}(2/3).$$ +This is $-(2/3)i$ where $\theta = \pi,$ (evaluated in the negative +direction, so it is $(2/3)i$ in the positive direction) and $2/3$ where +$\theta = 0.$ +Summing these results, we get $0.$ + +\bye diff --git a/kang/hw8.tex b/kang/hw8.tex new file mode 100644 index 0000000..881d5b1 --- /dev/null +++ b/kang/hw8.tex @@ -0,0 +1,98 @@ +\def\Re{\mathop{\rm Re}\nolimits} +\def\Im{\mathop{\rm Im}\nolimits} +\def\Log{\mathop{\rm Log}\nolimits} +\let\rule\hrule +\def\hrule{\medskip\rule\medskip} + +%page 170 +% remember the cauchy integral proof +\noindent{\bf 4.} + +Inside the contour, the extension of the Cauchy integral applies and +tells us that $g(z)$ is equivalent to $2\pi if''(z)/2!$ where +$f(z) = z^3 + 2z.$ $f''(z) = 6z,$ so this evaluates to $6\pi iz.$ + +The integrand is analytic where $s\neq z,$ so with $z$ outside of $C,$ +the integral is zero by Cauchy's integral theorem---since the integrand +is analytic inside and on the simply connected region enclosed by $C.$ + +\noindent{\bf 6.} + +To determine whether $g(z)$ is analytic, we can use the definition of +the derivative +$$g'(z) = {g(z+\Delta z) - g(z)\over \Delta z}.$$ +If it exists, $g$ is analytic. +$$g'(z) = {1\over 2\pi i}\int_C {f(s)\over s-z-\Delta z} - {f(s)\over +s-z} {ds\over \Delta z}$$$$ += {1\over 2\pi i}\int_C {f(s)ds\over (s-z-\Delta z)(s-z)} += {1\over 2\pi i}\int_C {f(s)ds\over (s-z)^2} + {1\over 2\pi i}\int_C +{\Delta zf(s) ds\over (s-z-\Delta z)(s-z)^2},$$ +and that second term is limited by zero because $\Delta z$ can be +arbitrarily low. + +If $f(z)$ is continuous on $C,$ where $C\cap\{z\} = \emptyset,$ +$|s-z|>0,$ so ${f(z)\over (s-z)^2}$ is continuous and the derivative +exists. + +%page 177 +\noindent{\bf 2.} + +Because $f(z) \neq 0,$ and $f$ is analytic, $g(z) = 1/f(z)$ is +continuous and also analytic. +By the result for maximum values, there exists a value $M$ such that +$|g(z)| \leq M$ for all $z\in R.$ +Because $f(z)$ is not constant, $g(z)$ also isn't constant, and the only +points such that $g(z_0) = M$ are on the boundary. + +These conditions imply that, for all $z\in R,$ $|f(z)| \geq 1/M,$ and +the only points such that $f(z_0) = 1/M$ is on the boundary. +This proves that the minimum of $f$ are on the boundary. + +\noindent{\bf 4.} + +$$|f(z)|^2 = |\sin z|^2 = \sin^2 x + \sinh^2 y$$ +is maximized when $\sin x$ is maximized and when $\sinh y$ is maximized. +$\sin x$ has a maximum at $x=\pi/2$ on $(0,\pi)$ because this is the +maximum of the real function. +$\sinh y$ has a maximum at $y=1$ on $(0,1)$ because $\sinh x$ tends to +infinity as $x$ approaches either positive or negative infinity. +Therefore, $|f(z)|$ is maximized at $x + yi = \pi/2 + i.$ + +%page 185 +\noindent{\bf 2.} + +The principal arguments of these numbers are, for $\Theta_{2n},$ +$\tan^{-1}(1/n^2),$ and for $\Theta_{2n+1},$ $\tan^{-1}(-1/n^2).$ +Both of these are arbitrarily close to 0 for sufficiently large $n,$ so +the series has sum $0.$ + +This series converges unlike Example 2 in Section 60 because the value +to which it converges is not a branch cut, where a given point can be +infinitely close to distinct values of $\Theta.$ + +\noindent{\bf 3.} + +If $$\lim_{n\to\infty} z_n = z,$$ + +$|z_{n} - z| < \epsilon$ for $n > n_0.$ +Because $||z_n| - |z|| \leq |z_n - z|,$ $||z_n| - |z|| < \epsilon$ also +for $n > n_0.$ + +This shows that +$$\lim_{n\to\infty} |z_n| = |z|.$$ + +\noindent{\bf 8.} + +$$\sum_{n=1}^\infty z_n = S = S_x + iS_y,$$ +which are in turn defined as infinite sums over the real numbers. +Similarly, $T = T_x + iT_y.$ + +Therefore, +$$\sum_{n=1}^\infty (z_n + w_n) = \sum_{n=1}^\infty (z_{x_n} + iz_{y_n} ++ w_{x_n} + iw_{y_n}) = \sum_{n=1}^\infty (z_{x_n} + w_{x_n}) + +i(z_{y_n} + w_{y_n})$$$$ = (S_x + T_x) + i(S_y + T_y) = S_x + iS_y + T_x ++ iT_y = S + T,$$ +made possible by the analogous property for real series and the fact +that $\sum_{n=1}^\infty iz_n = i\sum_{n=1}^\infty z_n.$ + +\bye diff --git a/kang/hw9.tex b/kang/hw9.tex new file mode 100644 index 0000000..10ba2f7 --- /dev/null +++ b/kang/hw9.tex @@ -0,0 +1,185 @@ +\def\Log{\mathop{\rm Log}\nolimits} +\let\rule\hrule +\def\hrule{\medskip\rule\medskip} + +%page 195 +\noindent{\bf 1.} + +First, +$$\cosh z = \sum_{n=0}^\infty {z^{2n}\over (2n)!}$$ + +Substituting $z^2$ for $z$ and then multiplying each term by $z$ will +give $z\cosh(z^2).$ + +$$z{(z^2)^{2n}\over (2n)!} = {zz^{4n} \over (2n)!} = {z^{4n+1}\over +(2n)!}.$$ + +This gives +$$z\cosh(z^2) = \sum_{n=0}^\infty {z^{4n+1}\over (2n)!}$$ +This applies over the entire plane because this function is entire. + +\noindent{\bf 3.} + +The Maclaurin expansion of +$$f(z) = {z\over z^4+4} = {z\over 4}\cdot {1\over 1+(z^4/4)}$$ +may be found by substituting $-z^4/4$ in the place of $z$ in the +standard $1/(1-z)$ Maclaurin expansion, then multiplying by $z/4.$ + +This gives +$$f(z) = \sum_{n=0}^\infty {z^{4n+1}\over 4^{n-1}}$$ + +\noindent{\bf 7.} + +$$f(z) = \sin z = {e^{iz} - e^{-iz}\over 2}.$$ +$$f^{(n)}(z) = i^n{e^{iz} - (-1)^ne^{-iz}\over 2}.$$ +Where $n = 2k+1,$ where $k$ is an integer, $f^{(n)}(0)$ simplifies to +$0$ because $e^{i0} - (-1)^{2k+1}e^{-i0} = 1 - 1 = 0.$ +Similarly, where $n = 2k,$ $f^{(n)}(0)$ simplifies to $i^{2k} = (-1)^k$ +because $e^{i0} - (-1)^{2k}e^{-i0} = 1 + 1 = 2,$ which substituted into +the original equation becomes $i^{2k}{2\over 2}.$ + +This provides an alternate justification of the Maclaurin expansion +given in Section 64. +Using the standard Maclaurin sum, +$$f(z) = \sum_{n=0}^\infty {f^{(n)}(0)z^n\over n!} = \sum_{k=0}^\infty +{f^{(2k)}(0)z^{2k}\over (2k)!} + \sum_{k=0}^\infty +{f^{(2k+1)}(0)z^{2k+1}\over (2k+1)!} = \sum_{k=0}^\infty +{(-1)^kz^{2k}\over (2k)!}$$ + +\hrule +%page 205 +\noindent{\bf 2.} + +$$f(z) = {1\over 1+z} = {1\over z}\cdot {1\over 1+(1/z)}$$ + +By substitution into the standard $1/(1-z)$ expansion (with $-1/z$ being +substituted for $z$), +$${1\over 1+(1/z)} = \sum_{n=0}^\infty (-1)^n(1/z)^n = +\sum_{n=0}^\infty {(-1)^n\over z^n}.$$ +$${1\over z} \cdot {1\over 1+(1/z)} = \sum_{n=0}^\infty {(-1)^n\over +z^{n+1}} = \sum_{n=1}^\infty {(-1)^{n-1}\over z^n}$$ + +The standard $1/(1-(-1/z))$ applies because +$1<|z|<\infty \to |-1/z| < 1.$ + +\noindent{\bf 3.} + +$${1\over z(1+z^2)} = {1\over z^3(1+(1/z^2))}$$ + +With $1<|z|<\infty \to |-1/z^2|<1,$ +$${1\over (1-(-1/z^2))} = \sum_{n=0}^\infty (-1)^n z^{-2n}.$$ +$${1\over z^3(1-(-1/z^2))} = \sum_{n=0}^\infty (-1)^n z^{-2n-3}.$$ + +\noindent{\bf 5.} + +% I know how to do this one. Just formulate 1/(z-1) and repeat for +% 1/(z-2) + +$$f(z) = {-1\over (z-1)(z-2)} = {1\over z-1} - {1\over z-2}.$$ + +Within $|z|<1,$ +$${1\over z-1} = -{1\over 1-z} = \sum_{n=0}^\infty (-1)z^n.$$ +On $|z|>1,$ +$${1\over z-1} = {1\over z}\cdot{1\over 1 - (1/z)} = +\sum_{n=0}^\infty z^{-(n+1)}.$$ + +Within $|z|<2,$ +$${1\over z-2} = -{1\over 2}\cdot{1\over 1 - z/2} = +\sum_{n=0}^\infty {(-1)z^n\over 2^{n+1}}.$$ +On $|z|>2,$ +$${1\over z-2} = {1\over z}\cdot{1\over 1-(2/z)} = \sum_{n=0}^\infty +2^n/z^(n+1)$$ + +Within $|z|<1$ and $|z|<2,$ ($D_1$) these become +$$\sum_{n=0}^\infty z^n\left({1\over 2^{n+1}} - 1\right).$$ + +Within $|z|>1$ and $|z|<2,$ ($D_2$) these become +$$\sum_{n=0}^\infty {z^n\over 2^{n+1}} + \sum_{n=1}^\infty {1\over z^n}.$$ + +Within $|z|>1$ and $|z|>2,$ ($D_3$) these become +$$\sum_{n=1}^\infty {1 - 2^{n-1}\over z^n}$$ + +\hrule +%page 218 +\noindent{\bf 1.} + +The first derivative of $1/(1-z)$ is $1/(1-z)^2,$ which will have the +Maclaurin series equal to the termwise differentiation of the $1/(1-z)$ +Maclaurina series. Except $n = 0,$ (for which $z^n = z^0$ has first +derivative 0) the first derivative of $z^n$ is $nz^{n-1}.$ +This gives summation +$${1\over (1-z)^2} = \sum_{n=1}^\infty nz^{n-1} = \sum_{n=0}^\infty +(n+1)z^n.$$ + +Similarly, the second derivative of $1/(1-z)$ is $2/(1-z)^3.$ +The second derivative of $z^n$ for $n\geq2$ is $n(n-1)z^{n-2},$ giving +summation +$${2\over (1-z)^3} = \sum_{n=2}^\infty n(n-1)z^{n-2} = \sum_{n=0}^\infty +(n+2)(n+1)z^n.$$ + +\noindent{\bf 5.} + +$${\cos z\over z^2 - (\pi/2)^2} = {\cos z\over (z-\pi/2)(z+\pi/2)} = +{\cos z\over \pi(z-\pi/2)} - {\cos z\over \pi(z+\pi/2)} = +{-\sin(z-\pi/2)\over \pi(z-\pi/2)} - {\sin(z+\pi/2)\over \pi(z+\pi/2)}.$$ + +As shown in the example in Section 71, $\sin w/w$ is analytic, so this +function is analytic. + +\noindent{\bf 6.} + +With $|z-1|<1,$ +$$\int_1^z {1\over w}dw = \sum_{n=0}^\infty \int_1^z (-1)^n (w-1)^n dw +\to \Log z = \sum_{n=0}^\infty (-1)^n (z-1)^{n+1}/(n+1) = +\sum_{n=1}^\infty {(-1)^{n+1}(z-1)^n\over n}.$$ + +\hrule +%page 224 +\noindent{\bf 1.} + +On $0<|z|<1,$ +$$e^z = 1 + z + z^2/2 + z^3/6 + \cdots$$ + +$${1\over z(z^2+1)} = 1/z - z + \cdots$$ + +Taking their product gives + +$${e^z\over z(z^2+1)} = 1/z + 1 + z/2 + z^2/6 - z - z^2 + \cdots = +1/z + 1 - z/2 - 5z^2/6 + \cdots$$ + +\hrule +%page 237 +\noindent{\bf 1.} +% I don't understand residues at all. + +\noindent{\it (a)} + +$${1\over z+z^2} = {(1+z)^{-1}\over z},$$ +giving a residue of $1+z,$ or, at $z=0,$ $1.$ + +\noindent{\it (b)} + +$$z\cos\left({1\over z}\right) = \sum_{n=0}^\infty (-1)^n {z^{1-2n}\over +(2n)!}.$$ +The value at $z^{-1}$ or $1-2n = -1 \to n = 1$ is $-1/2.$ + +\noindent{\it (c)} + +$${z-\sin z\over z} = 1 - \sum_{n=0}^\infty (-1)^n {z^{2n}\over (2n+1)!}$$ +has residue of $0$ because this is strictly a Taylor series. + +\noindent{\it (d)} + +Noting that $\cot z = 1/z - z/3 - z^3/45 + \ldots,$ +$${\cot z\over z^4} = {1\over z^4}(1/z - z/3 - z^3/45 + \ldots) = +{1\over z^5} - {1\over 3z^3} - {1\over 45z} + \ldots,$$ +giving a residue of $-1/45.$ + +\noindent{\it (e)} + +$${\sinh z\over z^4(1-z^2)} = +z^{-4}(z+{z^3\over 3!}+\cdots)(1+z^2+z^4+\cdots) = +z^{-3} + z^{-1}/6 + z^{-1} + z/6 + z + z^3/6,$$ +giving a residue of $7/6.$ + +\bye |