aboutsummaryrefslogtreecommitdiff
path: root/kang/hw11.tex
blob: d55a9e85cf80780fb07098530dc03c88a0526638 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
\def\Res{\mathop{\rm Res}}
\def\Re{\mathop{\rm Re}\nolimits}
\def\Im{\mathop{\rm Im}\nolimits}
\let\rule\hrule
\def\hrule{\goodbreak\medskip\rule\medskip\goodbreak}

%page 253

\noindent{\bf 4.}

\noindent{\it (a)}

$$(\sec z)^{-1} = \cos z = q(z).$$
$$p(z) = z.$$
$$p(\pi/2+n\pi) = \pi/2 + n\pi = z_n\neq 0, \qquad q(\pi/2+n\pi) = 0,
\qquad q'(\pi/2+n\pi) = -\sin(\pi/2+n\pi) = (-1)^{n+1} \neq 0,$$
so this is a simple pole with residue
$$\Res_{z=z_n}(z\sec z) = (-1)^nz_n.$$

\noindent{\it (b)}

Similarly,
$$(\tanh(z)) = {\sinh z\over\cosh z},$$
giving $p(z) = \sinh z$ and $q(z) = \cosh z,$
which forms a simple pole because
$$p(z_n) = -\sin(\pi/2 + n\pi) = (-1)^n, \qquad q(z_n) = \cos(\pi/2 +
n\pi) = 0, \qquad q'(z_n) = \sin(\pi/2 + n\pi) = (-1)^n.$$

$$p(z_n)/q'(z_n) = (-1)^n/(-1)^n = 1 = \Res_{z=z_n}\tanh z$$

\noindent{\bf 6.}

The value of this integral is equal to $2\pi i$ times the sum of the
residues of $$f(z) = {1\over z^2\sin z}$$ within the square.
These are $z^2 = 0 \to z = 0$ and $\sin z = 0 \to z = z_n = \pi n,$
where $-N\leq n\leq N.$
This set includes $z = 0.$

$$f(z) = {p(z)\over q(z)}$$
where $p(z) = 1$ and $q(z) = z^2\sin z.$ $p(z_n)\neq 1,$ $q(z_n) = 0,$
and $q(z_n) = z_n^2\cos z_n + 2z_n\sin z_n = z_n^2(-1)^n \neq 0$ (except
at $z_n = 0.$)
The sum of residues within the range of $-N\leq n\leq N$ and $n\neq 0$
is $$\sum_{n=1}^N (-1)^nz_n^{-2}+z_{-n}^{-2} = \sum_{n=1}^N {2(-1)^n\over(\pi
n)^2}.$$

At $z_n = 0,$
$$f(z) = {\phi(z)\over z^3},$$
where $\phi(z) = {z\over\sin z},$
This gives a residue at 0 of ${\phi''(0)\over 3!}$.
$$\phi''(z) = -{\cos z\over(\sin z)^2} - {\cos z - z\sin z\over(\sin z)^2}
+ {2z(\cos z)^2\over(\sin z)^3} =
{-2\cos z\sin z + z(\sin z)^2 + 2z(\cos z)^2 \over (\sin z)^3}.$$
$$\phi''(0) = 1,$$
found by noting that, near 0, $\sin z\to z$ and $\cos z\to 1.$
This gives a 1/6 residue.

Together, this makes
$$\int_{C_N} {dz\over z^2\sin z} = 2\pi i\left[{1\over 6}+2\sum_{n=1}^N
{(-1)^n\over\pi^2 n^2}\right].$$

If the integral tends to 0 as $N\to\infty,$
$$0 = {1\over 6}+2\sum_{n=1}^N{(-1)^n\over \pi^2 n^2} \to 
-{\pi^2\over 12} = \sum_{n=1}^N{(-1)^n\over n^2},$$
meaning the series tends to $\pi^2/12.$

\noindent{\bf 10.}

Because $p(z)/q(z)$ has a pole of order $m,$
$${p(z)\over q(z)} = {\phi(z)\over (z-z_0)^m},$$
where $\phi(z)$ is analytic and non-zero at $z_0,$ further giving
$$q(z) = {p(z)\over\phi(z)}(z-z_0)^m,$$
and because $\phi(z)$ is nonzero, $p(z)/\phi(z)$ is analytic, and this
tells us that $q(z)$ has a zero of order $m$ because $q(z) =
g(z)(z-z_0)^m$ where $g(z)$ is a nonzero analytic function.

\hrule
%page 264

\noindent{\bf 1.}

$$z^2+1 = (z-i)(z+i).$$
The only singularity above the real axis is $z = i.$
This point is a simple pole, so its residue is $1/(i+i) = -i/2.$
This gives the value of the integral as $\pi i*(-i/2) = \pi/2$ (since
the integrand is even and $\pi R/(R^2-1)$ vanishes to 0 as $R$ tends to
infinity).

\noindent{\bf 4.}

The singularities of this integrand are, like in the example, the sixth
roots of $-1,$ and they are simple poles, but the residues $B_k$
evaluate instead to $$B_k = \Res_{z=c_k} {z^2\over z^6+1} = {c_k^2\over
6c_k^5} = {c_k^3\over 6c_k^6} = -{c_k^3\over 6}.$$
$$c_k = e^{i(\pi/6+k\pi/3)} \to c_k^3 = e^{i(\pi/2+k\pi)} = i(-1)^k.$$
Since $k\in\{0,1,2\},$ the residues sum to $-i/6,$ giving the value of
the integral to be $\pi i*(-i/6) = -\pi/6,$ (again valid because the
integrand is even and $\pi R^3/(R^6-1)$ vanishes to 0 as $R$ tends to
infinity).

\noindent{\bf 8.}

$$q(z)=(z^2+1)(z^2+2z+2) = (z+i)(z-i)(z+(1+i))(z+(1-i)).$$
The singularities above the real axis are simple poles $z = i, -1+i.$
At these singularities, the residues $p(z)/q'(z)$ are respectively
$${i\over (2i)(1+2i)(1)} = {1-2i\over10}$$ and $${-1+i\over
(-1+2i)(-1)(2i)} = {-1+3i\over 10}.$$

$M_R = {R\over (R^2-1)(R^2-2)} \to R\pi M_R = {R^2\over
(R^2-1)(R^2-2)},$
so $\int_{C_R}f(x)dx = 0$ as $R$ tends to infinity.
This allows us to determine the Cauchy principal value of the integral
to be $2\pi i\cdot i/10 = -\pi/5.$

\hrule
%page 273

\noindent{\bf 1.}

$$\int_{-\infty}^\infty {\cos x\thinspace dx\over (x^2+a^2)(x^2+b^2)} =
\Re \int_{-\infty}^\infty {e^{ix}dx\over (x^2+a^2)(x^2+b^2)}.$$
The singularities in the upper half of the plane are simple poles
$x=ai, x=bi.$
These have residues $${e^{-a}\over (2ai)(-a^2+b^2)}$$ and $$e^{-b}\over
(2bi)(-b^2+a^2),$$ respectively.
$$\int_{-\infty}^\infty {e^{ix}dx\over (x^2+a^2)(x^2+b^2)}
= 2\pi iB - \int_{C_R} f(z)e^{iz} dz.$$
This last integral tends to $0$ by Jordan's lemma because $f(z)$ has
maximum value ${1\over (R^2-a^2)(R^2-b^2)},$ which tends to 0 as $R$
tends to infinity where $R>a$ and $R>b.$
$$2\pi iB = 2\pi i\left({e^{-a}/2a-e^{-b}/2b \over i(a^2-b^2)}\right) =
\pi({e^{-a}/a - e^{-b}/b \over (a^2-b^2)}),$$
proving the integral formula.

\noindent{\bf 5.}

$$\int_{-\infty}^\infty {x^3\sin ax\over x^4+4}dx = \Im
\int_{-\infty}^\infty {x^3e^{iax}\over x^4+4}dx.$$

$$\int_{-\infty}^\infty {x^3e^{iax}\over x^4+4}dx = 2\pi iB - \int_{C_R}
f(x)e^{iax}dx.$$
Where $|x|>R>\sqrt 2,$ the maximum value of $f(x)$ is
$$M_R<{R^3\over R^4-4},$$
which tends to $0$ as $R\to\infty,$ telling us the integral evaluates to
$0.$
The singularities in the upper half of the plane are $c_k = \sqrt
2e^{i(\pi/4+k\pi/2)},$ where $k\in\{0,1\}.$
These are simple poles, so they evaluate to $$p(c_k)/q'(c_k) = {c_k^3
e^{iac_k}\over 4c_k^3} = e^{iac_k}/4 =
e^{ia\sqrt2 e^{i(\pi/4+k\pi/2)}}/4 =
$$$$ e^{ia\sqrt2(\cos(\pi/4+k\pi/2)+i\sin(\pi/4+k\pi/2))}/4
= e^{ia((-1)^k+i)}/4
= e^{a(i(-1)^k-1)}/4
= e^{-a}(\cos(a(-1)^k)+i\sin(a(-1)^k))/4,$$
summing to $2e^{-a}\cos(a)/4.$
Therefore, the integral evaluates to $2\pi ie^{-a}\cos a/2,$
giving imaginary component (and value of the original integral)
$\pi e^{-a}\cos a.$

\noindent{\bf 8.}

$$\int_{-\infty}^\infty {\sin x dx\over x^2+4x+5} =
\Im\int_{-\infty}^\infty {e^{ix} dx\over (x+(2+i))(x+(2-i))}$$

The only singularity in the upper half of the plane is $-2+i,$
with a residue of
$$e^{-2i-1}\over 2i,$$
giving the integral a value
${2\pi ie^{-2i-1}\over 2i} = \pi e^{-1-2i} = {\pi\over e}(\cos(-2)+i\sin(-2)),$
giving an imaginary component $-\pi\sin(2)/e.$

This answer is valid because $f(z)$ tends to zero on $C_R$ as
$R\to\infty,$ where $$f(z) = {1\over z^2+4z+5}.$$

\bye